REVISION OF PYLOPAGURUS AND TOMOPAGURUS (CRUSTACEA: DECAPODA: PAGURIDAE), WITH THE DESCRIPTIONS OF NEW GENERA AND SPECIES.

PART IV.
LOPHOPAGURUS McLAUGHLIN AND AUSTRALEREMUS McLAUGHLIN

By Patsy A. McLaughlin ${ }^{1}$ and S. W. Gunn ${ }^{2}$
${ }^{1}$ Shannon Point Marine Center, 1900 Shannon Point Road, Anacortes, Washington 98221-4042, USA
${ }^{2}$ Department of Crustacea, Museum of Victoria, Swanston Street, Melbourne, Victoria 3000, Australia

Abstract

McLaughlin, P.A. and Gunn, S.W., 1992. Revision of Pylopagurus and Tomopagurus (Crustacea: Decapoda: Paguridae), with descriptions of new genera and species. Part IV. Lophopagurus McLaughlin and Australeremus McLaughlin. Memoirs of the Museum of Victoria 53: 43-99. In this fourth of a six-part series, the genera Lophopagurus, and Australeremus as herein emended, and their respective species are redescribcd and illustrated. The identity of Lophopagurus thompsoni (Filhol) is defined by lectotype selection and a species heretofore confounded with it is described as Lophopagurus foresti sp. nov. One additional new species of Lophopagurus, L. nodulosus sp . nov. is also described. The assignment of Pylopagurus cristalus (H. Milne Edwards) to Lophopagurus is refuted; it is reassigned to Australeremus. The questionable assignment of Pylopagurus kirkii (Filhol) to Australeremus is confirmed. Pagurus triserralus (Ortmann) has been determined to be the senior subjective synonym of Pylopagurus serpulophilus Miyake. It and Pylopagurus stewarti (Filhol) are also assigned to Australeremus and two new species, A. laurentae sp . nov. and A. eltaninae sp. nov., are described in this genus. Keys to the species are presented for both genera.

Contents

Introduction 43
Materials 44
Lophopagurus 45
Key to species of Lophopagurus 46
Lophopagurus thompsoni (Filhol) 47
Lophopagurus foresti sp. nov. 52
Lophopagurus nodulosus sp. nov. 55
Lophopagurus crenatus (Borradaile) 58
Lophopagurus lacertosus (Henderson) 61
Lophopagurus nanus (Henderson) 65
Australeremus 68
Key to the species of Australeremus 70
Australeremus cookii (Filhol) 70
Australeremus laurentae sp. nov. 74
Australeremus cristatus (H. Milne Edwards) 77
Australeremus kirkii (Filhol) 80
Australeremus stewarti (Filhol) 83
Australeremus triserratus (Ortmann) 87
Australeremus eltaninae sp. nov. 92
Acknowledgements 94
References 95 95

Introduction

Morc than 15 years ago, Jacques Forest and Michèlc de Saint Laurent (Muséum National d'Histoirc Naturelle, Paris) began a review and
revision of the taxonomy of the hermit crabs of New Zealand (R.L.C. Pilgrim, pers. comm.; Schembri and McLay, 1983; J. Forest, J. Yaldwyn, pers. comms.). The efforts of these
well known careinologists initially were focused on the Coenobitoidea; however, they recognized the need for, and began, revisionary work in the Paguroidea as well. It was, in part, through their help that one of us (PMcL) was able to make inaugural subdivisions of the heterogeneous genus Pylopagurus.
In Part I of what is to be a six part revision, Pylopagurus Milne Edwards and Bouvier, 1891, was restricted to species typified by P. discoidalis (A. Milne Edwards, 1880); the remaining speeies assigned to Pylopagurus by A. Milne Edwards and Bouvier (1893) were transferred to new genera (McLaughlin, 1981a). Part II dealt with the western Atlantic-Eastern Pacific genera Rhodochirus McLaughlin and Phimochirus McLaughlin (McLaughlin, 198Ib), and Part III presented diagnoses and descriptions of new species of the Atlantic genus Agaricochirus McLaughlin and the Pacific genera Enallopagurus McLaughlin and Enallopaguropsis McLaughlin (McLaughlin, 1982). Part IV reports on speeies assigned to Lophopagurus McLaughlin and Australeremus McLaughlin, together with descriptions of four new species.

Among the taxa characterized by 11 pairs of phyllobranch gills and females with paired Ist pleopods modified as gonopods, Lophopagurus is distinctive in the form of the left chelae of its members. There is little variation in the configuration of the chela among the assigned species, all of which apparently are endenic to the waters of New Zealand and southern Australia. However, the genus can be divided into two distinct, and presumably evolutionary sis-ter-groups on the basis of the similarity or dissimilarity of the dactyls and occasionally also the propodi of the ambulatory legs. Although such variations have not been observed in other pylopagurid-like genera, somewhat analogous dissimilarities between left third and the remaining right and left pereopods have been reported in certain speeies of Pylopaguropsis, a genus in which female gonopods are also present but one immediately distinguishable from pylo-pagurid-like genera by the presence of 13 pairs of trichobranchiate gills (McLaughlin and Haig, 1989).

When originally diagnosed (McLaughlin, 1981a), Australeremus was represented only by its type species, Eupagurus cookii Filhol, I883, and with the questionably assignment of Eupagurus kirkii Filhol, 1883. However, new data have shown that the diagnosis of Australeremus. recquires emendation, and that at least one of its representatives occurs in the more northern
waters of Japan and China. The uneertain assignment of E. kirkii to the genus is confirmed.
Pagurus cristatus H. Milne Edwards, 1836, whieh had been questionably assigned to Lophopagurus by McLaughlin (1981a), is now recognized as properly belonging to Australeremus. Two of the species first included by McLaughlin (1981a) in Pylopagutus sensu strieto, i.e., P. stewarti (Filhol) and P. serpulophilus Miyake, must now be transferred to Australeremus. Miyake's species is believed to be a junior subjective synonym of Eupagutus triserralus Ortmann. Additionally, two new species of Australerenues are described from New Zealand waters.
Identification of species of Lophopagurus and Australeremus is complicated by the high degree of intrageneric similarities exhibited by their respective taxa. Moreover, species of both genera exhibit considerable intraspecific variation, particularly in the strength of the armature of the right cheliped. Additionally, characters such as length-width ratios and the development of spines on the segments of the pereopods vary with specimen size, geographic distribution and/or habitat. In contrast, colour patterns frequently appear to be duplicated. Keys to the genera have been developed using relatively stable characters and do provide assistance in species recognition. However, it is strongly recommended that the species descriptions be referred to for all but the most "classic" representatives.

Materials

The material for this study came initially from the United States Antaretic Program (USARP), through the auspices of the Smithsonian Oeeanographic Sorting Center (SOSC). This material has been augmented by specimens from the colleetions of the Australian Museum, Sydney (AM), California Aeademy of Sciences, San Francisco (CAS), Canterbury Museum, Christchurch (CMC), Musée de Zoologie, Université de Strasbourg (MZUS), Muséum National d'Histoire Naturelle, Paris (MNHN), Museum of Vietoria, Melbourne (NMV), New Zealand Department of Conservation (NZDC). New Zealand Oceanographic Institute, Wellington (NZOI), National Museum of Natural History, Smithsonian Institution (USNM), National Muscum of New Zealand, Wellington (NMNZ). Nationaal Natuurhistorisch Museum, formerly Rijksmuseum van Natuurlijke Historie, Leiden
(RMNH), Naturhistoriska Riksmuseet, Stockholm (NHRM), Portobello Marine Laboratory, University of Otago, Dunedin (PML), The Natural History Museum, formerly British Museum (Natural History), London (BMNH), and Zoologiska Museet, Uppsala Universitet, Uppsala (ZMUU). Primary type specimens (holotypes and paratypes) from USARP collections are deposited in the National Museum of Natural History; when available, supplemental materials have been distributed among the aforementioned museums. All other specimens have been returned to their repositories of origin or deposited in one or more of the aforementioned institutions. As much as possible institutional abbreviations have been taken from the Standard Symbolic Codes for Institutional

Resource Collections ... (Leviton et al., 1985). A single measurement, shicld length (SL) provides an indication of specimen size.

Lophopagurus McLaughlin, 1981

Pylopagurus. - Forest and de Saint Laurent, 1967: 145 (in part), not Pylopagurus Milne Edwards and Bouvier, 1891.
Lophopagurus McLaughlin, 1981a: 3 (type species, by original designation: Eupagurus thompsoni Filhol, 1885a. Gender masculine.)

Diagnosis. Eleven pairs of phyllobranch gills. Ocular acicles narrowly triangular, with strong submarginal spine, and rarely accessory spinule; separated basally by slightly less to considerably more than basal width of 1 acicle. Sternite of 3rd

Figure 1. Lophopagurus. A, C, E, L. foresti sp. nov., A, maxillule; C, maxilla; E, first maxilliped. B, D, F, L. namus (Henderson), B, maxillule; D, maxilla, F, first maxilliped. Seale $=1.0 \mathrm{~mm}(A, C, E)$ and $0.5 \mathrm{~mm}(B, D, F)$.
maxilhperts msually unamed. Basal anternouar segment wilh prominent lateral spine and with ventodistal margin produced into elongate, slender lohe. Maxillule ($\mathrm{F}_{\mathrm{ig}} \mathrm{I} \wedge, 13$) with external lobe well developed, not recarved, internal lobe with I or 2 terminal bristles Maxilla ($\left({ }^{\circ}, 1\right)$ with moximal lobe ol scaphognalhite not appreciably broadened. liass maxilliped (Fig. It: F) witl slender exopod. Thited maxilliped with well developed crista dentata ind prominent accessory tools; meras sometimes with spine at dorsodistal margin.

Right cheliped with chela Ionger Han broad; angice ol propodal-carpal articulation $0^{\circ}-15^{\circ}$ from horizontal plame; dorsolateral magein of palm curved, dorsomesial margin depressed, Jorsal surliace with strablat or concave dorsomesial componem (F "g. 213, 613), delineated by row (s) of spines or tubereles, remaning dorsad surlice with I or 2 narrow lo moderately broad, luherembate or spinose rides. I elt cheliped with chela broadly triangular in cross-sechon and dorsal view; darsolateral margin depressed, dorsal milline clevalled into prominent spinose or tubereulate ked or crest propodal-carpal articuIathon $0^{\circ}-25^{\prime \prime}$ from Iorizontal plane. Dactyls old ambulatory legs with lateral lites variable (rounded, llatlenced, maked by mominem longiludinal sulci, slighaly or comspicuously concate). Sternite ol 3rd percopods with anterior projection subscmicircular to subrectangular. occasionally with 1 or 2 marginal spines. Fommats pereopods with propodal risp consisting of single row ol corncous scalles; dacelylusually with small to moderately well developed metungaid process at base ol chaw. Pereopodal bases and cosace often with dense tufis ol long setace

Abdomen typically flexed. Wropods asymmetrical. felson with transverse sulare; posterior lobes symmetrical or slightly asymmetrical, terminal magins straght, obligue or rounded, armed wibl momerous small to moderately strong spines, tateral magens denticulate, spinulose or spinose. Males without pared pleopods. with 3 unpanded, une pually biramous left pleopods. Females with paired Ist pleopods modilied as gomopods, with 4 unpaired biramoms kelt
pleopods, 2 nd- 4 th with both rami well developed, 5 th with condopod reduced.

Distribution. New Zealand and south-eastern Australia, sublidal to 840 m .
litwology. Iophopagums is from the Greek lophos, the erest, and pagomors a crab, and refers Io the crested left chela characteristic of this genus.

Rermarks. Melaughlin (1981a) tentatively assigned l’yopagurns sristalus (H. Milne Edwards) to Lophopagums on the basis of a photograph graciously provided by I. Forest and M. de Saint Laturent. During the course of the present study, we have had the opportunity to examine representatives of this tixon and have Found that it is not correctly assignable to Lophopasurns. It is herein transterred to Aastraleremıs.

As previously mentioned, species of hophopagurns can be divided intotwo distinct, and seemingly evolutionary sister-gromps. The lirst, and presumably ancestral group. which inclades $/$. lareqtosus (Henderson), L. cronatus (Borradaile), and $/$. mamm (Ilenderson), exhibits litule if any dillerence in the morphological structure of the dactyls of the percopods (rounded, llatened. with or without longitudinal sulci). The second, and apmarenly divergent group, which includes 1. thompsoni, L. foresti sp. nov., and L. hoderhosus sp. nov., manilests substantial morphological dillerences between the dactyl of the 3rd telt pereopod (markedly broader and comspicuously concave) and the dactyls of the remaining ambulatory legs. Frequently the dorsal surface of the propodus of the left 3rd also is llattened and the bateral face somewhat concave. Nonetheless, patterns of routine variation such as the atmat ture of these pereopods are similar between spectes of each gromp. For example, in the lirst group. the amature of the carpi varies from a complete row of dorsal spines on the carpus of each pereopod to a complete row only on the right 2nd in 1. . lacertosms. A comparable pattern is seen in $/$. thomp,somi, a member of the second group.

Key to species of Lophopagurus

1. Carpiof 2nd (al least right) and often also 3 rdpereopods cach with row of

- Carpi of 2nd and 3 shd pereopods withoul row of spines posterion to......... an dorsodistal angle [2nd occasionally with I (rarely 2) posterodorsal spine(s)]
$\therefore \quad$ Dactylsand propodi ol keli 2nd and 3rd pereopods distinctly different (int

	face of dactyl conspicuously concave) .L. thompsoni
	Dactyls of left 2 nd and 3rd pcreopods not distinctly different (in lateral view, segments of 3rd not appreciably shorter and broader, lateral face of dactyl not conspicuously concave)
	Dorsal surface of dactyl and fixed finger of right chela with distinct small spines, spinules, or tubercles L. lacertosus
	Dorsal surface of dactyl and fixcd finger of right chela each with row of large, partially coalesced tubercles \qquad L. crenatus
	Lateral face of dactyl of left 3rd pereopod flat or rounded (with or without longitudinal sulcus)
	Lateral face of dactyl of left 3rd pereopod concave 5
	Dorsal surface of palm of right chela with spinules or small tubercles dorsolateral surface of palm of left chela spinulose or tuberculate

Lophopagurus thompsoni (Filhol, 1885) s.s. Figure 2
Eupagurus thompsoni Filhol, 1885a: 33 (in part). 1885b: 423 (in part), pl. 5 I fig. 6 (? in part), not fig. 7 , see remarks. - Alcock, 1905: 176 (in part), see remarks. - McLaughlin, 1981a: 3 (in part), see remarks.
Not Pagurus thompsoni Bell, 1851: 372, unnumbered figure (= Pagurus bubescens Krøyer).
Eupagirus thomsoni. - Thomson. 1898: 183 (in part), see remarks.
? Eupagurus thompsoni. - Thompson. 1930: 270, see remarks.
Pagurus thompsoni. - Gordan, 1956: 336 (in part, see remarks). - Forest. 1961: 223.
Pagurus thomsoni. - Forest, 1961: 223.
Pagurus lacerlosus. - Forest, 1961: 223.
Not Pagurus lacertosus (Henderson), see remarks.
Pylopagurus thompsoni. - Forest and de Saint Laurent, 1967: 145. - McLaughlin, 1981a: 3 (in part), see remarks.
Pylopagurus sp. "mauve antenna 1". - Probert et al.. 1979: 381 (list), 385.
Lophopagurus thompsoni. - McLaughlin, 1981a: 3 (by implication) (in part). see remarks.
Pagurus n. sp. (aff. thomsomi). - Rainer, 1981: 37.

Lophopagurus "thompsoni". - Schembri, 1982: 870. fig. 9. - Schembri and McLay, 1983: 30, figs 8a, b. - Probert and Wilson, 1984: 389 (list). - Schembri. 1988: 93. - Taylor ct al., 1989: 1064.
Type material. Lectotype (herein designated): Cook Strait. New Zealand, MNHN (female syntype, total length $=14 \mathrm{~mm}$, not examined).
Other material. New Zealand: RV Tangaroa, NZOI stn R94 ($37^{\circ} 37.9^{\prime} \mathrm{S}, 176^{\circ} 27.0^{\prime} \mathrm{E}$), 44-47 m, 21 Jan 1979, NMNZ (r 7414 (4 males, $3.8-5.1 \mathrm{~mm}$). RV Acheron stn BS $531\left(40^{\circ} 52^{\prime} \mathrm{S}, 172^{\circ} 04^{\prime} \mathrm{E}\right.$), $64 \mathrm{~m}, 10 \mathrm{Mar}$ 1976. NMNZ Cr8242 (2 males, $3.0,6.4 \mathrm{~mm}$). RV

Acheron stn BS $514\left(40^{\circ} 57.5^{\prime} \mathrm{S}, 174^{\circ} 01.5^{\prime} \mathrm{E}\right), 29 \mathrm{~m}, 5$ Mar 1976, NMNZ Cr8329 (1 male, 7.4 mm). RV Acheron stn BS 542 ($41^{\circ} 08^{\prime} \mathrm{S}, 174^{\circ} 33.5^{\prime} \mathrm{E}$), 282-293 m, 12 Mar 1976, NMNZ Cr7413 (7 males, 4 females, 3.6-9.1 $\mathrm{mm})$. USNS Ehanin $\operatorname{stn} 25 / 368$ ($43^{\circ} 16^{\prime} \mathrm{S}, 175^{\circ} 23^{\circ} \mathrm{E}$), 84 m . 19 Nov 1966, USNM 244449 (3 males, I female, 2 ovigerous females, 3.8-6.5 mm). USNS Eltanin stn $25 / 369$ ($43^{\circ} 17^{\prime} \mathrm{S}, 175^{\circ} 23^{\prime} \mathrm{E}$), $95 \mathrm{~m}, 19$ Nov 1966. NHRM 16678. RMNH D 40428 (2 males. 1 female, I ovigerous female, $5.0-7.1 \mathrm{~mm}$), USNS Eltanin stn $25 / 370\left(43^{\circ} 22^{\prime} \mathrm{S}, 175^{\circ} 20^{\prime} \mathrm{E}\right), 95 \mathrm{~m}, 19$ Nov 1966. USNM 244448 (1 ovigerous female, 6.3 mm). Walls of Pegasus Canyon ($43^{\circ} 25^{\prime} \mathrm{S}$, $173^{\circ} 26^{\prime} \mathrm{E}$) $183 \mathrm{~m}, 21 \mathrm{Feb}$ 1979, NMNZ Cr4914 (2 males, I female, 1 ovigerous female, SL 5.1-7.7 mm). USNS Eltanin $\operatorname{stn} 23 / 1709$ $\left(43^{\circ} 31^{\prime} \mathrm{S}, 176^{\circ} 10^{\prime} \mathrm{W}\right), 143-183 \mathrm{~m}, 24$ May 1966, USNM 244447 (1 male, 5.0 mm). Kaikoura (3 mi off shore). 30-60 m. 24 Jan 1967, NMNZ Cr3863 (10 males, 17 females, 4.1-10.6). Bay-mouth Bar, Deep Bay, Tory Channel. $3 \mathrm{~m}, 10$ Oct 1989, NZCD Crl9 (I male, 2 ovigerous females, 4.9-8.4 mm). RV Tangaroa NZOI stn B 556. SE Banks Peninsula ($44^{\circ} 00.0^{\prime}$ S. $173^{\circ} 47.5^{\prime} \mathrm{E}$), $179 \mathrm{~m}, 6$ Oct 1962 (1 male. 1 ovigerous female, 7.4. 8.4 mm). Port Chalmers, ZMUU, (1 male, $6.8 \mathrm{~mm})$.

Redescription. Shicld length equal to width or slightly longer than broad; antcrior margin between rostrum and lateral projections concavc; postcrior margin truncate; dorsal surface with few scattered tufts of setae. Rostrum triangular, acute, usually without terminal spinule. Latcral projections broadly rounded, with small marginal or submarginal spine.

Ocular pcduncles $1 / 2-2 / 3$ length of shicld; dorsal surface with tuft of stiff setac at base of slightly inflated cornea. Ocular acicles acutely and narrowly triangular, with small submarginal spine; separated basally by slightly less to slightly more than basal width of 1 aciclc.

Figure 2. Lophopagurus thompsoni (Filhol), male from Pegasus Canyon, New Zealand, NMNZCr4914. A, shield and cephalic appendages; B, chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D, right 2nd pereopod (lateral view); E, dactyl of right 2nd pereopod (mesial view); F, left 3rd pereopod (lateral view); G, dactyl of left 3rd pereopod (mesial view); H, anterior lobe of sternite of 3rd pereopods; 1 , telson. Scales $=5 \mathrm{~mm}(\mathrm{~A}-\mathrm{G})$ and $3 \mathrm{~mm}(\mathrm{H}, \mathrm{l})$.

Antennular peduncles overreach ocular peduncles by $1 / 2-3 / 4$ length of ultimate segment. Ultimate segment with tuft of setae at dorsodistal margin laterally.
Antennal peduncles overreach ocular peduncles by $1 / 3-1 / 2$ length of ultimate segment. Fifth
and fourth segments with scattered setae. Third segment with acute spine at ventrodistal angle. Second segment with dorsolateral distal angle produced, terminating in strong spine, 1-5 accessory spines and/or spinules on mesial and lateral margins; dorsomesial distal angle with
acute spine, mesial margin with few setae. Basal segment with small spine on laterodistal angle. Antennal aeicle reaehing nearly to distal margin of eornea and terminating in strong spine, mesial margin with row of tufts of setae. Antennal flagellum long, but rarely overreaching tip of right eheliped; usually every 2 nd or 3 rd artiele with 1 or 2 very short setae and oecasionally 1 or 2 slightly longer setae every several articles.

Right cheliped with daetyl somewhat triangular in cross-section; as long or slightly longer than palm and overlapped by fixed finger; cutting edge with row of calcareous teeth of varying size, terminating in corneous claw; dorsal surface with irregular rows of low tubercles, dorsomesial margin depressed ventrally and armed with row of tubereles, sometimes rather indistinct; ventral surface with 1 or 2 rows of tufts of moderately long setae. Palm $1 / 2-2 / 3$ length of carpus; dorsomesial margin depressed, dorsomesial eomponent almost perpendicular, delineated above by tubereular or spinose ridge indistinctly continuous with broad ridge of tubercles adjacent to culting edge of fixed finger; dorsal surface with scattered tubereles (sometimes only obscurely apparent) or small spines and with row of stronger spines or tubereles in midline. dorsolateral margin with row of aeute or blunt spines on palm, often appearing as very closelyspaeed tubereles on fixed finger: lateral face convex and spinulose or tubereulate on palm, ventral surface weakly tubcreulate. Carpus as long or slightly longer than merus; dorsomesial margin with double row of acute spines proximally, becoming single marginal and medially oblique rows distally, dorsal surface with numerous small spines or tubereles, distal margin with several spines, dorsolateral margin not distinctly delimited; mesial face coneave and with few low tubereles near distal margin, frequently also with low transverse ridges and tufts of setae; lateral face weakly tubereulate, ventrolateral margin with row of low tubercles, ventral surface with few low tubereles. Merus with acute spine at dorsodistal margin and frequently 2 or 3 additional spines in distal third, often aecompanied by transverse rows of tufts of setae; mesial and lateral faces with transverse rows of long setae, oecasionally with few tubercules or spinules ventrally, ventrolateral margin with row of spines, more acute in distal half; ventral surfaee with few low tubereles and tufts of setac, ventromesial margin with row of small spines, oeeasionally praetically obseured by tufts of long setae. Ischiuin with few small
spines or spinules on ventromesial margin and tufts of long setac.

Left cheliped triangular in eross-scetion; pro-podal-carpal articulation usually in horizontal plane. Dactyl $2^{1 / 4}-3$ times length of palm; cutting edge with row of eorneous teeth, terminating in small corneous claw and slightly overlapped by fixed finger; dorsomesial margin with row of small spines or tuberelcs in proximal half, dorsal surface with 1 or 2 rows of tufts of setae and oecasionally few small tubercules or spinules in midline. Palm $1 / 3-1 / 2$ length of carpus; markedly clevated in midline to prominent median crest armed with single row of very closely-spaced tubercles or with row of small spines, dorsolateral margin erenulate or tuberculate, sloping to ventral position on fixed finger, dorsolateral surface usually unarmed on palm but usually with few tubercles on fixed finger, dorsomesial surface of palm with few spines or tubereles, dorsomesial margin with row of tubercles. Carpus slightly shorter than merus and broadened distally; dorsolateral margin with row of moderately strong spines and tufts of long setac, row of somewhat smaller spines and lufts of setae on dorsomesial margin; lateral face with scattered, low. sometimes spinulose protuberances and numerous tufts of long setae, 1 or 2 prominent spines at or near distal margin; mesial face with scattered tufts of sctae and few tubercles on distal margin; ventral surface with low protuberanees, tubercles or small spincs and tufts of setac. Merus with transverse, sometimes spinulose ridges and long setae on dorsal surface primarily in distal half; ventromesial and ventrolateral margins each with row of spines, sometimes becoming exceptionally strong proximally, and tufts of dense setae. Ischium with row of small spines or spinules on ventromesial margin partially obseured by tufts of short setac.

Right and left 2nd and right 3rd pereopods similar. Daetyls slightly longer than propodi; in dorsal view, slightly twisted; in lateral view, slightly curved; terminating in small corncous claw; dorsal surfaees with low protuberances and tufts of setae, mesial faces each with dorsal and ventral row of corneous spinules, ventral margins eaeh with 13-21 corncous spinules, lateral faecs slightly convex and often with a row of short setae near ventral margin. Propodi $1 / 4-1 / 3$ longer than carpi; dorsal surfaces with low protuberances and tufts of setae, ventral surfaces each with row of small corneous spinules partially obscured by tufts of setac, mesial and lateral faces each with row of short, widely-spaced
setae dorsally and ventrally. Carpi slightly shorter than meri, 2nd and frequently also 3 rd each with row of spines on dorsal margin, strongest on 2 nd right. Meri with low protuberanees and tufts of setae on dorsal surfaecs, ventrolateral margins each with row of spines (2 nd) or weak to moderately well developed protuberances (3 rd), all surfaces also with tufts of short to long setae. Isehia with tufts of setac on ventral margins. Left 3rd pereopod with dactyl, in dorsal view, more strongly twisted, lateral face markedly coneave, unarmed, dorsal surface broad and flattened, dorsomesial and dorsolateral margins each with row of stiff bristles or thin corneous spinules, ventral margin with 1723 short corneous spinules, mesial facc convex and with single or double dorsal and ventral rows of corneous spinules. Propodus broad, lateral face flattened or slightly coneave; dorsal surface with transverse rows of short setae, mesial face with dorsal and ventral rows of widely-spaced setae, ventral surface with row of small eorneous spinules and transverse row of similar spinules at distal margin. Carpus, merus and ischium similar to 3rd right.

Anterior lobe of sternite of 3rd percopods subrectangular to subsemicireular, anterior margin with long, thick setac. Fourth pereopod with small preungual process at base of claw. Telson with posterior lobes slightly asymmetrical, terminal margins oblique, each with few strong spines and numerous smaller spines extending onto lateral margins.

Colour. "Eyestalks orange-red proximally tending to pale blue distally, antennules pale blue or mauve; antennae strongly barred dark redbrown and white; chelipeds orange-red with longitudinal reddish stripes and white areas around the joint region, especially that between earpopodite and meropodite; walking legs orange-red with longitudinal reddish stripes and white areas around the joint regions." (Schembri and McLay, 1983)

Distribution. Southern New Zealand; subtidal to 293 meters.

Affinities. Lophopagurns thompsoni is most closely related to, and has often been confounded with, L. foresti sp. nov. There are only subtle differences in the armature of the right cheliped in the two species, and intraspecific variations make these differences unreliable as diagnostie characters. Both species also are similarly coloured, particularly the longitudinallystriped ambulatory legs. The armature of the
pereopods, particularly the carpi of the 2 nd and frequently also the 3 rd, and the dactyl of the left 3rd afford immediate separation of the two species. The carpi of the 2 nd pereopods, at least the right, of L. thompsoni have a full row of spines on the dorsal surface. The 3 rd pereopods often are similarly armed, although the spines are smaller and may be fewer in number; however, these spines oecasionally are represented only by spinulose protuberances or may be entirely absent. The ventral margin of the dactyl of the 3 rd left pereopod is armed with 21-23 small corncous spinules. The dorsolateral surface of the palm of the left ehela is usually smooth. In contrast, the carpi of the 2nd pereopods in L. foresti are provided with a single dorsodistal spine; occasionally 1 , or very rarely 2 . additional spine(s) may develop in the proximal half of the dorsal surface. Only a single dorsodistal spine is present on the carpi of the 3 rd pereopods. The ventral margin of the dactyl of the 3 rd left pereopod is armed with $11-16$ corneous spinules. The dorsolateral surface of the palm of the left chela most frequently is tuberculate at least proximally. l. thompsoni is also generally similar in appearance to L. lacerlosus. Again the pereopods, particularly the 3 rd left. provide distinguishing characters. \ln L. thompsoni there is a marked difference between the 2 nd and 3 rd left pereopods. The dactyl of the 3 rd is appreciably shorter, broader, and has a conspieuously concave lateral face. Additionally, the ventral margins of the daetyls of both 2 nd and 3 rd pereopods are armed with short corneous spinules. In L. lacertosus, the 2 nd and 3 rd pereopods are generally similar in size and conformation. although there is a tendency in females for the lateral face of the dactyl of the 3rd left to become slightly coneave; the ventral margins of the dactyls are armed with considerably longer spinules, particularly in the distal fourth.

Remarks. Filhol (1885a) published his first description of Eupagurus thompsoni in a relatively unknown account of the crustacean fauna of New Zealand. This initial description was brief and lacked illustrations. In a subsequent report published later that same year, Filhol (1885b) repeated the eryptic description, but provided an illustration of the whole animal (pl. 51 fig. 6). It is his description in the "Mission de l'île Campbell" that is most frequently eited as the original. In this report, the figure legends for plate 51 state that figure 7 is also an illustration of the left chela of E. thomp.omi but this clearly is incorrect. The illustrated appendage bears no
resemblance to that depicted for the whole animal. Filhol's whole animal illustration is also inaccurate in showing no abdominal pleopods.

Filhol (1885a) confounded two species under the name thompsoni; his figure (1885b, pl. 51 fig. 6) seems to be a composite of both. At least three syntypes of Filhol's taxon exist. The first, representing one of the species, is represented in the collections of the Muséum National d'Histoire Naturelle, Paris (Forest, 1961; pers. comm.). A second syntype, representing the second species. (USNM 22927) part of a gift from E.-L. Bouvier in 1899 (cf. Manning and Holthuis, 1981), is in the collections of the National Museum of Natural History, Smithsonian Institution. A third syntype (RMNH 1661), also representing the second species, is in the collections of the Nationaal Natuurhistorisch Museum, Leiden. During their work with New Zealand pagurids. Forest and de Saint Laurent (unpublished) provided illustrations, descriptions and working keys to New Zealand carcinologists, and it is upon these data that subsequent local faunal and systematic studies have been based (e.g., Schembri and McLay, 1983; Probert and Wilson, 1984; Schembri, 1988). Consequently, it is deemed most appropriate, and in the interest of stability in nomenclature, that the specimen from the Muséum National d'Histoire Naturelle, Paris, be selected as the lectotype of Eupagurus thompsoni Filhol. The remaining two syntypes represent an undescribed species. The specimen from the U.S. National Museum of Natural History (USNM 22927) is designated the holotype of this second species, Lophopagurus foresti sp. nov.

We have not had the opportunity to examine the lectotype of E. thompsoni directly because of its present poor condition; however, J. Forest has meticulously compared it with specimens from the New Zealand Oceanographic Institute, currently in Paris, and two of these latter specimens (1 male, 8.4 mm and 1 ovigerous female, 7.4 mm) from NZOl stn B 556 have been provided for our examination.

Thomson (1898) repeated Filhol's (1885b) description of "Eupagurus thomsoni" (sic), but indicated that he had no personal knowledge of this species. His report, therefore, referred to both of the taxa confounded by Filhol (1885a, b). It would appear that Thomson's (1898) report was the first introduction of the second spelling attributed to Filhol's spccies.

Alcock (1905) mercly presented a list of spccies; however, in citing both Filhol (1885b)
and Thomson (1898) as references to the species, he also was refcrring to both taxa.

Chilton (1911) noted that while the specimens he identified as Eupagurus thomsoni agreed with Filhol's (1885b) short description, the carpus of the right cheliped was not nearly as spiny as Filhol's figure would suggest. We have reexamined Chilton's (1911) four specimens from "Nora Niven" stns 5 and 17 (CMC) and found that while they do agree with onc of the two taxa confounded by Filhol under the name thompsoni, they are referable to L. foresti sp . nov.

Thompson (1930) provisionally referred a series of specimens to Eupagurus thompsoni, including those identified by Chilton. Thompson remarked on the variability of his specimens and noted that in many particular points his specimens seemed closer to L. crenatus (Borradaile). Since Thompson did not describe the configuration and armature of the pereopods, it is impossible, without first hand examination, to know what taxa were actually represented. Thompson's specimens have yet to be examined.

Gordan's (1956) bibliography of pagurids listed both Pagurus thomsoni and P. thompsoni. The former name she attributed to no author, but implied its synonymy with Pagurus pubescens Krøyer. Her citations for P. thompsoni (Filhol. 1885) include authors who were referring to both P. thompsoni Bell and P. thompsoni (Fillool).

Eupagurus thompsoni Filhol became a secondary junior homonym when the International Commission for Zoological Nomenclature placed Eupagurus on the Official Index of Rejccted and Invalid Generic Names in Zoology (ICZN, 1957; Hemming, 1958). Forcst, in Pike (1961), pointed out that Filhol's (1885a) specific name thompsoni, also spelled thomsoni by Forest was preoccupied by Pagurus thompsoni Bell (1853). In his discussion, Forest stated that he had compared Pike's (1961) parasitized spccimen with Filhol's type in the Paris museum and had found them identical. However, he also thought that both agreed with Henderson's (1888) description of Eupagurus lacertosus and because Filhol's name was preoccupied, Pagurus lacertosus was the correct name. As prcviously noted, L. thompsoni and L. lacertosus bear a superficial resemblance to one another; however, the two are distinct taxa, a conclusion also subsequently reached by Forest (pers. comm.). Although lacertosus is not available as a replacement name for thompsoni, the need for
such a name no longer exists. Forest and de Saint Laurent (1967) transferred both P. thompsomi and P. lacertosus to Pytopagurus; McLaughlin (1981a) placed them in Lophopagurus. According to ICZN Art. 59(c) "II", in the case of secondary homonymy, the junior species-group name has not been replaced [Art. 60], and the taxa in question are no longer considered congeneric, the junior name is not to be rejected ...". Clearly Bell's and Filhol's species cannot be considered congeneric, therelore Filhol's specifie name, thompsoni is retained.
McLaughlin (1981a) was unaware that Filhol had confounded two species under the name thompsoni when she designated Eupagurus thompsomi as the type species of Lophopagurus. At the time, her interpretation of Filhol's species was based, in part, on the photographs provided by J. Forest and M. de Saint Laurent, and in part on the syntype Irom the National Museum ol ${ }^{-}$ Natural History (USNM 22927). The generic diagnosis of Lophopagurus was made from a review of the four species assigned at the time, i.e., Pylonagurus thompsoni sensu lato, P. lacertosus, P^{\prime}. namss, and P. crenatus. Designation of P. thompsoni as the type species was an arbitrary decision, thus misinterpretation of the type species, in the meaning of ICZN Art. 70, presents no problem.

Lophopagurus foresti sp. nov.

Figures 1A,C, E, 3
Eирадития thompsomi Filhol, 1885a: 33 (in part); 18851: 423 (in part), pl. 51 fig. 6 ('? in part), not tig. 7. - Alcock, $1905: 176$ (in part). - McLaughlin, 1981 a: 3 (in part), see remarks under $I_{\text {. }}$ thompsomi.

Eиираgини: thonnsoni. - Thonson. 1898 : 183 (in part). - Chilton, 1911: 298; see remarks under L. thomp somi.

Pugurns thonnpsomi. - Gordan, 1956: 336 (in part). see remarks under I. thompsoni.

Pylopagurus thompsoni. - McLaughlin, 1981a: 3 (in part), sec remarks under L. . thompsomi.

Lophopagurus thompsomi. - McLaughlin, 1981a: 3 (by implication) (in part), see remarks under L. thompsomi.
Type material. Holotype: Cook Strait, New Zealand, USNM 22927 (malc, 5.3 mm).

Paratypes: KV Acheron stn 13S 389, between Three Kings Islands and North Cape ($34^{\circ} 21^{\prime}$ S $172^{\circ} 37^{\prime}$ E), 58 in. 19 Feb 1974, NMNZ Cr8181 (1 malc. 2.0 mm). West end Great Island, Three Kings Islands, G. Hardy and A. Stewart, 3-7 m, 28 Nov 1983. NMNZ Cr8036 (1 male, 2.5 mm). RV Tangaroa NZOI stn R 90 ($37^{\circ} 46.5^{\circ} \mathrm{S}, 176^{\circ} 38.5^{\prime} \mathrm{E}$), $39 \mathrm{~m}, 21$ Jan 1979, NMNZ Cr8330 (1 malc. 5.0 mm). RV Acheron stn BS 490
($39^{\circ} 57^{\circ} \mathrm{S}, 174^{\circ} 34^{\prime} \mathrm{E}$), $33-35 \mathrm{~m}, 2 \mathrm{Mar} 1976, \mathrm{NMNZ}$ Cr8331 (6 males, $2.9-5.2 \mathrm{~mm}$). Cook Strait, New Zealand, RMNH 1661 (I male, 4.4 mm). RV Acheron stn BS $488\left(40^{\circ} 09.5^{\prime} \mathrm{S}, 174^{\circ} 36^{\circ} \mathrm{E}\right), 82 \mathrm{~m}, 2$ Mar 1976, NMNZ Cr4911 (4 males, 2 females, $2.4-4.1 \mathrm{~mm}$). Wellington Harbour, M. Davidson, $19 \mathrm{~m}, 17 \mathrm{Apr}$ 1980, NMNZ Cr4109, 4113 (3 male, 6 females, $5.0-$ 7.9 mm); M. Davidson, $17 \mathrm{~m}, 7$ May 1980, NMNZ Cr4110 (1 malc, 7.2 mm). RV Acheron stn BS 511 $\left(40^{\circ} 46^{\circ} \mathrm{S}, 173^{\circ} 52.5^{\circ} \mathrm{E}\right), 18 \mathrm{~m}, 5 \mathrm{Mar} 1976 \mathrm{NMNZ}$ Cr8332 (1 male, 5.2 mm). RV Acheron stn BS 541 ($40^{\circ} 46.5^{\prime} \mathrm{S}, 173^{\circ} 57^{\circ} \mathrm{E}$), 59-64 m, 11 Mar 1976. NMNZ Cr8333 (1 malc, 7.6 mm). RV Acheron stn BS 531 ($40^{\circ} 52^{\prime} \mathrm{S}, 172^{\circ} 04^{\prime} \mathrm{E}$), $64 \mathrm{~m}, 10 \mathrm{Mar}$ 1976, NMNZ Cr8334 (1 male, 6.7 mm). RV Acheron stn BS 500 ($40^{\circ} 57^{\prime} \mathrm{S}, 174^{\circ} 18^{\prime} \mathrm{E}$), 139-144 m, 3 Mar 1976, NMNZ 7396 (1 male, 1 female, $4.8,5.8 \mathrm{~mm}$, female with rhizocephalan). RV Acheron stn BS 514 ($40^{\circ} 57.5^{\circ} \mathrm{S}$, $174^{\circ} 01.5^{\prime} \mathrm{E}$), $29 \mathrm{~m}, 5$ Mar 1976, NMNZ Cr8335 (3 males, 1 female, $3.9-7.7 \mathrm{~mm}$). RV Acheron stn BS 504 ($40^{\circ} 59.5^{\circ} \mathrm{S}, 174^{\circ} 08^{\circ} \mathrm{E}$), $18-22 \mathrm{~m}, 4$ Mar 1976. NMNZ Cr8336 (1 male, 1 female, $5.2,7.2 \mathrm{~mm}$). Bushette Shoal, Kaikoura, $56 \mathrm{~m}, \mathrm{~K}$, Pilgrim, 14 Nov 1964. NMNZ Cr4111 (I intersex, 6.6 mm). USNS Ehanin $\operatorname{stn} 16 / 1431\left(45^{\circ} 37^{\prime} \mathrm{S}, 170^{\circ} 58^{\prime} \mathrm{E}\right), 51 \mathrm{~m} .23$ Feb 1965. USNM 244457. 244460. NHRM type colln 437I (12 males, 8 females. 2.9-6.6 mm). Nora Niven stns 5 (50 mi . E of Wreck Recf) and 17 (8 mi . NE of Cape Saunders). $117 \mathrm{~m}, 102-192 \mathrm{~m}, 13,25$ Jun 1907, CM (3 males, 1 fenale, $4.8-6.5 \mathrm{~mm}$).
Description. Shield longer than broad; anterior margin between rostrum and lateral projections concave; posterior margin truncate. Rostrum triangular, acute, often terminating in small spinule. Lateral projections broadly rounded, usually with strong marginal or submarginal spinc.
Ocular peduncles $2 / 3-3 / 4$ length of shield; dorsomesial face with row of tufts of setae. Ocular acieles slender, terminating acutely and with strong submarginal spine; separated basally by width of rostrum, or slightly less than basal width of I acicle.

Antennular peduncles when extended usually exceeding ocular peduncles by $1 / 3-1 / 2$ length of ultimate segment, occasionally not overreaching corneac. Ultimate segment with tuft of long setae near distal margin and olten row of widelyspaced, short setae on ventral surface. Pcnultimate segment usually glabrous. Basal segment with very strong, acute spine on lateral face dorsally, tult of setae on mesial face.
Antennal peduncle usually reaching to extremity of cornea. Fifth and lourth segments with seattered sctac. Third segment with acute spine at ventrodistal angle usually obscured by tuft of long setae. Second segment with dorsolateral distal angle produced, terminating in acute

Figure 3. Lophopagurus foresti sp. nov. holotype, from Cook Strait, New Zealand, USNM 22927. A, shicld and cephalic appendages; B, chela and earpus of right cheliped (dorsal view), C, ehela and earpus of left eheliped (dorsal view); D, right 2nd pereopod (lateral view); E, left 3rd percopod (lateral view); F, anterior lobe of sternite of 3 rd percopods; G, telson. Scales $=3 \mathrm{~mm}(A-E)$ and $1 \mathrm{~mm}(F, G)$.
spine, mesial and lateral margins with 1-3 accessory spinules and few setae; dorsomesial distal angle with acutc spine, mesial face weakly setose. First segment with small spine on lateral face distally, ventral margin produced, with 1 spine distolaterally. Antennal acicle terminating in strong spine, mesial face with row of tufts of moderately long setae. Antennal flagellum sometimes overreaching right chcliped, with 1 very short seta each article and 2 slightly longer
(»1 article Iength) setae cvery 2-4 articles in proximal half.

Right cheliped with dactyl slightly longer than palm; cutting edge with row of strong calcareous tecth in proximal $3 / 4-4 / 5$, corncous tecth distally; terminating in corncous claw. Dorsal surfacc of dactyl elevated in midline and armed with irregular row of small to very strong spines or tubcreles, dorsomesial and dorsolatcral surfaces spinulose or tuberculate, dorsomesial margin
with row of small to large spines or tubercles. Palm slightly more than half length of carpus; dorsomesial margin with single or double row of small to large tubercles, dorsomesial component flat to strongly concave, weakly to strongly tuberculate, delineated dorsally by curved. tuberculate ridge extending to tip of fixed finger, dorsal surface covered with blunt spines or tubercles and with elevated ridge laterad of midline extending onto fixed finger, dorsolateral margin with large, compressed tubercles, sometimes becoming more spine-like on fixed finger: lateral face convex proximally and with scattered tubercles; ventral surface with scattered tufts of setae, longest and thickest on fixed finger and dactyl. Carpus approximately as long as merus; dorsomesial margin with irregular row of moderately strong spines, dorsal surface with single or double row of tubercles mesiad of midline, sometimes only weakly tuberculate and with low, transverse, sometimes spinulose ridges and tufts of setae laterally, distal margin with 35 small spines, dorsolateral margin not delimited; ventrolateral margin with row of small blunt spines distally, sometimes only crenulate; mesial face often with 1-3 spines or tubercles on distal margin; ventral surface with few low tubercles and scattered tufts of setae. Merus with strong, acute spine on dorsodistal margin; ventromesial margin with row of blunt spines in proximal half and 1 or 2 spinules distally; ventral surface with few blunt spines or tubercles, ventrolateral margin with row of spines, strongest and most acute distally. Ischium with row of spines or spinules on ventromesial margin and occasionally I acute spine on lateral face ventrally.

Left cheliped usually not reaching beyond base of dactyl of right; propodal-carpal articulation in horizontal plane. Dactyl 2-4 times longer than palm; overlapped by fixed finger and sometimes with small hiatus proximally; cutting edge with row of corncous teeth; terminating in strong corneous claw. Dorsal surface ol dactyl unarmed but often with row of tufts of setae near dorsomesial margin and second near cutting edge, dorsomesial margin with few blunt spines or tubercles proximally. Palm $1 / 4-1 / 3$ length of carpus, midline with prominent elevated crest armed with single row of simple or corneoustipped spines or tubercles extending almost to tip of fixed finger, dorsolateral face spinulose or tuberculate, dorsolateral margin with blunt tubercles proximally often becoming corneoustipped spines distally, margin markedly depressed ventrally on fixed finger, dorsomesial
face with few spinules, dorsomesial margin with row of $2-4$ small spines. Carpus with single row of spines on dorsolateral margin and 2 or 3 spines on distal margin; lateral face with transverse ridges and tufts of setae, occasionally few spinules and 1 or 2 spines dorsally, distal margin with 1-3 prominent spines dorsally and sometimes also few smaller spines; mesial face with short, transverse rows of tufts of setae, occasionally also with 1 small spine on distal margin dorsally and few low protuberances ventrally; ventral surface with tufts of setae and frequently several small spines or tubercles. Merus with row of tufts of setae on dorsal margin; ventromesial margin with row of spines, strongest in proximal third, ventrolateral margin with row of spines, strongest in distal hall. Ischium with row of blunt spines on ventromesial margin and frequently small spine on laterodistal margin ventrally.

Ambulatory legs olten overreaching right cheliped; left 3rd pereopod dissimilar; all terminating in strong corneous claws. Dactyls of 2nd pereopods and 3 rd right $1 / 4-1 / 5$ longer than propodi; dorsal surlaces each with row of stiff setae, ventral margins each with 9-13 comeous spines. mesial faces cach with row of corneous spinules near dorsal margin and row ol stiff bristles or bristle-like corneous spinules near ventral margin. Propodi each with 2 corncous spinules at ventrodistal angle and row of spinules on ventral surface, dorsal and ventral surfaces also with rows of stiff setae. Carpi each with strong dorsodistal spine and sometimes I additional spine in proximal half (2nd right, occasionally also 2nd left) and tufts of long setae. Meri each with row of tufts of setae on dorsal margin, 2nd with row of spines on ventrolateral margin (at least left) and 1 acute spine at ventrolateral distal angle, 3rd unarmed, but with tufts of setae. 1 sch ia unarmed. Third left pereopod with lateral surface of dacty conspicuously concave, ventral surface broad, with outer margin frequently thickened and occasionally with small calcareous nodules developed, row of 11-16 strong. corneous spines on inner margin. mesial face with double row of corneous spines dorsally and additional single or double row ventrally. Propodus with lateral surface somewhat llattened. ventral surface with row of corncous spinules and 1 corneous spine at ventrodistal angle. Carpus with single dorsodistal spine and tufts of setae on dorsal surface. Merus with tufts of setac on dorsal and ventral margins.

Anterior lobe of sternite of 3rd pereopods subsemiovate to subsenicircular, anterior margin
with long setae. Fourth pereopod with small preungual process at base of claw. Telson with numerous small spines and few stronger spines on terminal margins extending on to lateral margins.
Colour. (In preservative 4 years): Antennal flagella alternately banded reddish brown (4-7 articles) and translucent or white (2 or 3 articles). Right cheliped with 2 longitudinal orange stripes on the dorsal surface of the palm, 1 extending onto fixed finger and second at the cutting edge, 1 additional at the dorsodistal margin of the dactyl. Left cheliped with longitudinal orange stripe on the dorsolateral face of the left chela. Ambulatory legs with 4 longitudinal orange stripes visible in lateral view on the propodi, carpi and meri and $1-3$ on dactyls.
Etymology. This species is dedicated to Professor Jacques Forest in recognition of his contributions, not only to our knowledge of the New Zealand hermit crab fauna, but to the hermit crab fauna of the world.
Distribution. Northern, central and south-castern New Zealand; 18-192 m.
Affinities. L. foresti is very similar to L. thompsoni. However, it may be distinguished from the latter species by the carpi of the a mbulatory legs. which carry only single spines at the dorsodistal margins of the carpi, or occasionally an additional (or very rarely 2) spine(s) posteriorly on the 2 nd . The small number of corncous spinules ($11-16$) on the ventral margin of the dactyl of the 3rd left pereopod in L. foresti will also usually separate it from L. thompsoni. Lophopagurus foresti also bears considerable similarity to L. nanus; however, the distinct difference between the dactyls of the left 2 nd and 3 rd pereopods, (3rd with markedly concave lateral face) will immediately distinguish L. foresti from L. nanus, a species in which the configurations of the dactyls are all similar.
Remarks. A single, apparently "intersex", specimen from Bushette Shoal, Kaikoura, NZ (NMNZ Cr4111) was observed with male plcopods, a single female gonopore and no gonopods. There was no external indication of parasitism.

Lophopagurus nodulosus sp. nov.
Figure 4A-H
Pylopagurus crenatus. - Probert ct al., 1979: 381. Not Pylopagurus crenatus (Borradailc) (sec remarks).

Lophopagurus sp. nov. - Schembri. 1982: 870.
Lophopagurus n. sp. - Schembri and McLay. 1983: 30. figs 9a, b. - Schembri, 1988: 93.

Type material. Holotype: North side Punui Bay, Snares Island, New Zealand, $50 \mathrm{~m}, 24$ Feb 1976, NMNZ Cr8347 (male, 6.4 mm).

Paratypes: North side Punui Bay, Snares Island, New Zealand $50 \mathrm{~m}, 24$ Feb 1976, NMNZ Cr4912 (1 male, 5.9 mm); $50 \mathrm{~m}, 24$ Feb 1979, Cr7397 (4 males; 1 female, $3.3-7.4 \mathrm{~mm}$). USNS Eltanin stn $25 / 370$ $\left(43^{\circ} 22^{\circ} \mathrm{S}, 175^{\circ} 20^{\circ} \mathrm{E}\right), 95 \mathrm{~m}, 19$ Nov 1966, USNM 244458 (1 male, 6.9 mm). USNS Eltanin stn 51/590 ($52^{\circ} 08.5^{\prime} \mathrm{S}, 169^{\circ} 43.7^{\prime} \mathrm{E}$), $90-91 \mathrm{~m}, 20$ Jan 1972. USNM 244454 (1 male, 2.5 mm). USNS Eltanin stn $25 / 368\left(43^{\circ} 16^{\circ} \mathrm{S}, 175^{\circ} 23^{\prime} \mathrm{E}\right), 84 \mathrm{~m}, 19$ Nov 1966, USNM 244443, NHRM type colln 4372, RMNH D 40429 (2 males, 1 femalc, 1 ovigerous female, 5.0-7.4 $\mathrm{mm})$. Perseverance Harbour, Campbell Island, 11 m , K. Westerskov, 12 Feb 1985, NMNZ Cr4867 (1 male, 6.7 mm). Proclamation Island, Bounty Islands, D.S. Horning, $38 \mathrm{~m}, 8$ Nov 1978, NMNZ Cr8197 (9 males, 10 females, 2 ovigerous females, $3.4-6.7 \mathrm{~mm}$).
Description. Shield longer than broad; anterior margin between rostrum and lateral projections concave; anterolateral margins terraced or sloping: posterior margin truncate; dorsal surface with few scattered tufts of setae. Rostrum bluntly triangular, with very minute terminal spinule. Lateral projections broadly rounded, with moderately well developed submarginal spine.

Ocular peduncles $3 / 4-4 / 5$ shield length; corneae slightly dilated; dorsomesial surface with row of tufts of sctae, Ocular acicles narrowly triangular, with strong, but not elongate, submarginal spine; separated basally by slightly less than basal width of 1 acicle.

Antennular peduncles when extended overreach ocular peduncles by $1 / 4-1 / 3$ length of ultimate scgment. Ultimate segment with few scattered setae and tuft of setae at dorsolateral distal angle. Penultimate segment with few scattered setae. Basal segment with acute spine laterally.
Antennal peduncles only slightly overrcaching ocular poduncles. Fifth and fourth segments with scattered setae. Third segment with small spine at ventral margin obscured by tuft of setae. Second segment with dorsolateral distal angle produced, terminating in strong spine, mesial margin with 2-5 accessory spines, lateral margin with 1 or 2 accessory spines; dorsomesial distal angle with acute spine, mesial face with tufts of setae. First segment with small spine at dorsolateral distal angle, ventral margin produced and with 1 spine laterally. Antennal acicle reaching beyond base of cornea and sometimes overreaching cornea; slightly arcuate and terminat-

ing in strong spine. mesial margin with tufts of stiff setae. Antennal flagellum not overreaehing right cheliped; articles each with 1-3 minute setae and I or 2 slightly longer (<1 article length) every 2 nd to 5 th artiele, at least in proximal half.

Right cheliped with daetyl only slightly longer than palm; eutting edge with 3 or 4 calcareous teeth and short distal row of corneous teeth; terminating in small corneous claw and slightly overlapped by fixed finger. Dorsomesial margin of dactyl with closely-set, blunt spines proximally beeoming more spine-like distally, dorsal surface with raised row of prominent tubercular nodules and few seattered low tubercles; mesial and ventral surfaces with scattered tufts of stiff setae. Palm half length of carpus; dorsomesial margin with ridge of blunt or spinulose tubereles, dorsomesial eomponent eoncave, surface with numerous tubercles, delimited above by elevated tubereulate ridge; dorsal surface of palm with very prominent ridge of tubercles or nodules in midline and similar row of tubercles extending length of fixed finger, remaining surfaee of palm with numerous large tubercles, remaining surfaee of fixed finger eoncave and armed only with few very small tubercles. dorsolateral margin with row of spines, becoming more tubereulate on fixed finger; lateral face eonvex, with 1 or 2 irregular rows of tubercles dorsally and low protuberances ventrally. Carpus slightly longer than merus; dorsomesial margin with double row of spines marginally and adjaeent oblique row, dorsal surface with numerous tufts of setac, 1 or 2 rows of spines in midline and seattered spines or spinules particularly laterad of midline. dorsolateral margin delimited only by irregular row of transverse, spinulose ridges and tufts of setae; lateral face with scattered tufts of setae and few blunt spines on distal margin dorsally, ventrolateral margin with row of protuberances, tubereles or spines; mesial face eoneave, unarmed but with numerous tufts of setae. Merus with aeute spine at dorsodistal margin, dorsal surfaee with transverse ridges and tufts of setae, extending onto lateral and mesial faces in distal half; ventrolateral margin with row of tubercles proximally, beeoming aeute spines distally, ventral surface
with few scattered tubercles, ventromesial margin with row of spines or spinulose tubercles. Ischium with tufts of setae on ventromesial margin.

Left eheliped reaehing to base of dactyl of right or slightly beyond; propodal-carpal artieulation approximately in horizontal plane. Dactyl 2-3 times length of palm; terminating in corneous claw and slightly overlapped by fixed finger; cutting edge with row of corneous teeth; dorsomesial margin with few low spinules or tubercles in proximal third, dorsal, mesial and ventral surfaces with rows of tufts of setae. Palm $1 / 4$ length of carpus; midline very strongly elevated into crest composed of fused tubercles presenting sealloped appearance, usually continuing to tip of fixed finger, dorsolateral margin crenulate proximally, becoming row of weak spines on fixed finger, dorsolateral surface smooth or slightly pitted and with low tuberculate ridge in proximal half of fixed finger, dorsomesial faee of palm with few tubercles, dorsomesial margin with 3 spinulose lobes. Carpus approximately equaling length of merus; dorsolateral margin with row of strong spines, dorsomesial margin sometimes with 1 or 2 spines proximally and row of tufts of long stiff sctae, I strong, aeute spine on dorsodistal margin: mesial face with low, transverse ridges and tufts of setae; laterodistal margin with I strong and 1-3 smaller spines; ventral surface and ventrolateral and ventromesial margins all with tufts of setae. Merus with row of stiff setac on dorsodistal margin and tufts on setae on dorsal surface; ventromesial margin with 2 prominent, blunt spines in proximal half and 1 or 2 smaller spines in distal half, ventrolateral margin with row of acute spines. Ischium with tufts of setae on ventromesial margin.

Seeond pereopods and 3rd right similar; in dorsal view, slightly twisted; in lateral view, very slightly curved ventrally; terminating in strong, corneous claws. Dactyls slightly longer than propodi; dorsal surfaces slightly flattened, dorsomesial margins each with row of corneous spinules and tufts of long, stiff setae, dorsolateral margins with tufts of stiff setae, mesial faces each with partial or complete row(s) of corneous spinules and tufts of stiff setae dorsally and ventrally

Figure 4. Lophopugurus nodulosus sp. nov.. male paratype from Ettanin $\operatorname{stn} 25 / 370$, USNM 244455. A, shield and ecphalic appendages: B, chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D. right 2nd pereopod (lateral view); E, dactyl of right 2nd percopod (mesial view); F, left 3rd pereopod (lateral view); G, anterior lobe ol' sternite of 3rd pereopods; H, telson. Scales $=3 \mathrm{~mm}(\mathrm{~A}-\mathrm{F})$ and I mm (G, H).
(2nd) or complete row(s) of corncous spinules and tufts of setac (3rd); ventral margins each with 10-12 corncous spinules, lateral faces with scattered tufts of setac. Propodi $1 / 3-2 / 3$ longer than carpi; with low protuberances and tufts of long stiff setac on dorsal surfaces, ventral surfaces each with row of corneous spinules, mesial faces each with row of tufts of setac dorsally and ventrally. Carpi approximately $2 / 3$ Iength of meri; cach with low protuberances and tufts of setac on dorsal surface and single dorsodistal spine, rarely with second dorsal spine in proximal half (2nd). Meri with dorsal and ventral tufts of long setac, each also with acute spine at ventrolateral distal angle and I-4 spines on ventral surface (2nd) or unarmed (3rd). Ischia with tufts of long, stiff setae on dorsal and ventral margins. Third left pereopod with dactyl $1 / 5-1 / 4$ longer than propodus; in dorsal view, straight; in lateral view, slightly curved ventrally; dorsal surface flattened, dorsolatertal margin often broadly scalloped and with row of tufts of stiff setac and partial row of corneous spinules distally, lateral face markedly concave, ventral margin often tuberculate, with row of 12-15 corneous spines; mesial face sometimes with slight longitudinal sulcus proximally and dorsal and ventral rows of corncous spinules. Propodus slightly longer than carpus; dorsal surface flattened, lateral face flat or slightly concave, unarmed, dorsal surface with rows of tufts of long stifl setac, ventral surlace with row of corneous spinules and tufts of long setac, mesial face with transverse rows of tults of setae and I or 2 corncous spinules on distal margin ventrally. Carpus, merus and ischium similar to right 3rd pereopod.

Sternite of 3rd pereopods with anterior lobe subsemicircular. Fourth percopod with small preungual process at base of claw. Posterior lobes of telson with terminal margins level to oblique, armed with several strong spines interspersed with smaller spines, lateral margins spinulose.

C'olour. "Eyestalks reddish; antennules uniform pale reddish-orange; antennac reddish with narrow white bands; chelipeds and walking legs, reddish-orange ground colour with darker bands." (Schembri and McLay, 1983).

Distribution. South-castern New Zealand, Campbell and Bounty Islands; 11-400 m.
Etymology. From the Latin nodus, meaning knotty or knobby, and referring to the nodular appearance of the armature of the right chela.
Affinities: Lophopagurus nodulosus is elosely allicd to L. foresti sp. nov. but is easily separated from that species by the distinctive nodules, rather than spines and tubereles on the dorsal surface of the right chela.
Remarks. In a benthic community study, Probert et al. (1979) listed Pylopagurus crenatus (Borradaile) among the species occurring on the continental shelf and upper continental slope off the Otago Peninsula of south-eastern New Zealand. Schembri and McLay (1983), in their annotated key to the hermit erabs of the Otago region, cquated Probert et al.'s (1979) P. crenatus to their Lophopagurus n. sp. We have not seen Probert et al.'s, material; however, McLay (pers. comm.) has confirmed the conspecificity of the material.
Schembri and McLay (1983) reported both Lophopagurus thompsoni and Lophopagurus n. sp. The distribution of the former species was given as continental shelf ($<200 \mathrm{~m}$) and oceasionally intertidal, that of the latter restricted to the upper and deep canyon regions (>200 m). The specimen of L. nodulosus from Campbell Island was collected from a much more shallow depth (11 m).

Lophopagurus crenatus (Borradaile, 1916)
Figure 5
Eupagurtes crenatus Borradaile. 1916:95, fig. 8. Thompson, 1930: 270.
P'agırия сrenatus. - Gordan, 1956: 328.
Pyonagurus crenatus. - Forest and de Saint Laurent, 1967: 145. - McLaughlin, 1981a: 3.
l.ophopagumes cronatus. - McLaughlin. 1981a: 3 (by implication).
Not Pylopagumes crenalus. - I'robert et al., 1979: 381 (= Lophopagurus nodulasus sp. nov.).
Type material. Holotype: New Zealand, "Terra Nova" $\sin 90$, "From summit. Gt. King. Three Kings Islands, S. 14° W., 8 miles, 183 metres (100 fathoms.). July 25 , 1911." BMNH 1917.1.29.134 (male, 5.8 mm).

Other material. None.

Figure 5. Lophopagurus crenatus (Borradaile), holotype, from off Three Kings Islands, New Zealand, BMNH 1917.1.29.134. A, shield and cephatic appendages; B, ehela and carpus of right eheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D, right 2nd pereopod (lateral view); E, lelt 3rd pereopod (lateral view); F, anterior lobe of sternite of 3 rld pereopods; G, telson. Scales $=3 \mathrm{~mm}(A-E)$ and $1 \mathrm{~mm}(\mathrm{~F}, \mathrm{G})$.

Redescriphom. Shictd slighty broader than long. Rostrum blundy triangular, without terminal spmuld. Latcral projections obtuscly triangular, with submarginal terminal spinule.

Ocular peduncles $3 / 4$ shichd lengih, moderately stout and with corncac somewhat diated, lew tufts of setace on dorsal surlace. Ocular acieles narrowly triangular, terminating acutely and will strong submarginal spine; separated basally by basal witth of I acicle.
Antemolar pedancles when extended over-
 mate segment.

Antennal peduncles overreaching ocular pedmeles by at least $1 / 4$ lenglh of ultimate segment. Filith and lourth segments each with few seattered setae. Third segment with smatl spine at ventrodistal margin. Sceond segment with dorsolateral distal angle strongly produced and terminating in strong spine, mesial margin with 5 or 6 small spimules, dorsomesial distalangle with strong spine. Farst segment with small spine and/or tult of setace at lateral margin distally, ventral magin produced and with I acute spine laterally.
Right cheliped with dactyl slightly less than ength of palm, appreciably overiapped by lixed linger, terminating in small corneons claw; dorsomesial margin with row of molerately small tubertes, dorsal surline strongly elevated in midline and with numerous broad, sometimes coalesced tuberces. Palm approximately $2 / 3$ length of carpus; dorsomesial component sloping, delimited dersally by prominent tubereulate ridge, surtice slighly comeave and with few small spinules or tubercles, dorsomesial margin with double row of small spines, dorsal surtace of palm and lixed linger weakly tuberculate but with prominent tuberculate ridge extending nearly entire lengith of fixed linger, dorsolateral margin with row of strong. denticulate lubereles; lateral lace with seattered tubercles and setace Corpus with almost double row ol' st rong spines on dorsomesial margin, dorsat surlace witl seatered small spines and tubercles, dorsolateral margin not delimited; lateral surlace weakly tuberculate, vent rolateral margin with row of small spines increasing in size distally, ventromesial surlice with low ridges and tults oll long setac. Merus with transverse rows of still setac on dorsal margin, dorsodistal margin with I strong spinc; lateral face minutely tubereulate, ventrolateral margin with row of acme spines and tults of setae, ventromestal margin with few moderately strong spines.

Ischium with row of small tubereles on vent romesial margin.
L.eft cheliped reaching beyond base ol dactyl of right. Dactyl $2 \frac{1}{2}$ times Iength of palm, dorsal surlace with 2 or 3 tubereles on slightly elevated proximal midline, dorsomesial surlace with few small tubereles dorsally and scattered sctac. Palm strongly elevated in midline and armed with row of strong spines, decreasing in size on fixed finger and becoming low broad tubercles distally, dorsolateral face with low granules or minute tubereles, dorsolateral margin with small denticulate tubercles, dorsomesial surlace with lew granules or minute tubercles and lew scattered stronger tubercles or blunt spines. Carpus subtriangular, dorsodistal margin produced into very strong spine in midline, dorsolateral margin with row of widely-spaced strong spines, dorsomesial margin and mesial lace with transverse protuberances or low tubercles and tufts of setae; lateral lace also with transverse ridges, more spinose in distal half and with strong spine on distal margin both dorsally and ventrally. Merus with Iulis ol stilf setae on dorsal surface; ventrolateral margin with row ol strong, acute spines, lateral lace with transverse ridges and tults of setae, ventromesial margin with 3 subacute spines proximally, ventral surlace with lew spinules and tults of setac. Ischium with row ol blunt or spinulose tubereles and tultis of thick setae on vental margin. Coxa with acute spine at ventromesial distal angle and smaller spinc on ventrolateral margin distally.

Pereopods overreaching right cheliped by approximately $2 / 3$ length of dactyl, right slightly longer than left. Dactyls slighty longer than propodi; in lateral view, slighly curved ventrally; in dorsal view, iwisted; Eeli 3 rd somewhat spatulate: dorsal surfaces each with single or double row of stifl setae, lateral laces each with longitudinal sulcus thanked by row of tufts of setac (2nd) or row of low rubereles at least dorsally (3rd), ventral margins each with row of strong. corncous spines, mesial faces each with longiudinal suleus llamked dorsally by row of corneous spines and ventrally by row of setie (2nd. 3rd right) or row of corncous spinules (3rd left). Propodi with transuerse rows of low protuberances and tults of setae dorsally, 2 conneous spines at ventrodistal margin and row of tults ol setae on ventral margin, mesial and lateral laces each with I or 2 rows of tufts of setae. Carpi with uregular row of small spines on dorsal surlace (right 2nd) or single spine at dorsodistal margin (3'd) and talts ol stiff selac. Meri with row of
tults of stiff setac on dorsal margin, lateral face with acute spine near ventrodistal margin and row of small spines on ventral margin (2nd) or unarmed (3rd). Ischia unarmed.

Sternite of 3rd percopods with anterior lobe semisubcircular. Telson with terminal margins of posterior lobes rounded to slightly oblicuue. armed with blunt spines; lateral margins as spinulose or spinose plate.

Colour. Unknown.

Distribution, At present known only from Three Kings Islands, New Zealand; 183 m .
Affinties: Lophopagurus crenatus is morphologically very similar to L. lacertoshs and perhaps may be synonymous with the latter species. as suggested by J. Forest and M. de Saint Laurent (pers. comm, to John Yaldwyn). The former species is known only from its holotype collected south-west of Three Kings Islands off the northern tip of New Zcaland (c. $34.2^{\circ} \mathrm{S}$). Lophopagurus lacertosus is a highly variable species, and in most morphological characters the holotype of L. crenaturs falls with in the range of these variations. However. none of the numerous specimens of L. lacertosus we have examined have exhibited the coalesced tuberculate armature of the dactyl and lixed finger of the right chela that is present in L. creratus. In view of the striking development of tubercles seen in L. nodulosus, it is possible that this is truly a distinguishing character, therelore we prefer, at least for the present, to recognize L. crematus as a distinct taxon. Lophopagurus crehattes is distinguished from L. Hamus by the presence of a row of spines on the carpus of the 2 nd right percopod in the former species.
Remarks. In his deseription of the single make specimen collected during the "Terra Nova" expedition. Borradaile (1916) described the carpi of the percopods as being armed with a single dorsodistal spine. An examination of the type has shown that to be inaccurate. The carpus of the right 2 nd pereopod is armed with a row of spines.

As previously noted, Probert et al. (1979) mistook specimens of L, hodulostes sp. nov. as L. crenatus. Had Borradaile's (1916) description been more accurate regarding the armature of the carpus of the right 2 nd percopod or more detailed in a description of the shape of the dactyl of the 3rd left pereopod, these authors would undoubtedly have realized that their species was distinet from L. crenaltes.

Lophopaguris lacertosus (Henderson, 1888)
Figure 6
I:npagmm, /acertoms I Ienderson, 1888: 63, pl. 6 lig. 7. - Thomson, 1898 : 178 (in part, see remarks). Salyce, 1902: 153. - Cirant (in Sayce), 1902: 155. Alcock, 1905: 175. - Zarenkov, 1967: 182 (in part), see remitrhs.
Paguris lacerowns. - Mcculloch, 1913: 346. Gordan, 1956:311 (in part), sec remarks.
? Pagullis cl. hacerowns. - Yaldwyn. 1975: 361.
Pytopagnrus haceqosus. - Forest and de Saint Laurent, 1967: It5. - Melaughlin, 1981a: 3.
I.ophopagums lacerowns. - Mclaughlin. 1981a: 3 (by implication).

Not E゙upagurlis hacrtoxas. - Pope, 1947: 131. unnumbered figs 3, 4. - Dakin el al., 1948: 209, 219. $-1953 ; 199$, pl. 44 lig. 7. - 1960: 199, pl. 44 fig. $7(=$ Pagmivas krviensis McLaughlin and Haig. 1984).

Not Pagurus lacertosns. - Griffin, 1967: 306. Healy and Yaldwyn, 1970: 72, lig. 35 (=1'usurivis jotriensis MeLaughlin and Haig, 1984).

Not Pasurus lacertosm: - Forest. 1961: 223 1I. (phopasurns thompwoui (Filhol)].
? Not Pagurus lacrtosms-- Lisza and Underwood. 1990: 47 (? = Pugmians knrinsis Mcladughlin and thaig, 1984), sec remarks.

Tive Material. Lectotype herein selected: Type locality, IMS "(halkenger" san 166, olf New 7aaland. BMNII 88:33 (male 9.6 mm).

Other Matural. RV Tangaroa, NZOI sin R 81 ($37^{\circ} 35.9^{\prime} \mathrm{S}$, $176^{\circ} 59.5^{\circ} \mathrm{E}$), 139-179 m, 20 Ian 1979) NMNZ (r8243 (I female, 2.3 mm). USNS E/taminstn $24 / 2718\left(38^{\circ} 22^{\prime} \mathrm{S}, 169^{\circ} 07^{\prime} \mathrm{W}\right)$, 531-6.56 m, 12 .lul 1966, USNM 244461 (9 males, 1 lemale, 2 ovigerous females, 4.3-9.2 mm). (hallenger Patcau (39 $14^{\circ} \mathrm{S}$, $169^{\circ} 27^{\circ} \mathrm{E}$), 560-572 m, 21 Sep 1976, NMNZ (r4905 (1 male, 6.9 mm), RV Acherou sin BS 519 . Cook Sirat Narows ($41^{\circ} 02^{\prime} \mathrm{S}, 174^{\circ} 33^{\prime} \mathrm{E}$), 186-256m, 6 Mar 1976, NMNZ (r4908 (1 Remale, 2.2 mm). Oll Cape Turakirac ($41^{\circ} 30.2^{\prime} \mathrm{S}, 174^{\circ} 52^{\prime} \mathrm{E}$), 658^{m}, 11 I)e 1974, NMN7. Cr7527 (1 male, 7.8 mm). RV Tangano NZOI stn R 27, SE of Cape Campbell ($41^{\circ} 55.8^{\prime} \mathrm{S}, 174^{\circ} 40.7^{\circ} \mathrm{E}$). 434-446 11, 14 Jan 1979, NMNZ (r4907 (1 ovigerous femalle, 6.6 mm). RV "James Cok' "stn I 22/60/70, of (ircymouth ($42^{\circ} 27^{\prime} \mathrm{S} .170^{\circ} 36^{\circ} \mathrm{E}$), $440-460 \mathrm{~mm}, 23$ Nov 1970, NMNZ Cr4909 (6 males, 2 lemales, $5.0-11.8$ mm). RV Acheron stn BS 433. Taiaroa I'rench off Otigo P'eninsula, A.J. Black, 723-769 m, II Aug 1974, NMNZ Cr4902 (I male, 5 ovigerous females, 4.7-6.9 mm). RV Ashroustn BS 558 , head of Pegasus Canyon $\left(43^{\circ} 30^{\prime} \mathrm{S}, 173^{\circ} 31.5^{\prime} \mathrm{E}\right), 446 \mathrm{~m}, 27 \mathrm{Sep} 1976$, NMNZ (r490) (2 males, 1 female, $4.1-9.0 \mathrm{~mm}$). RV Acheron stn BS 549, head of Karitane Canyon $\left(45^{\circ} 38.5^{\prime} \mathrm{E}\right.$, $\left.171^{\circ} 05^{\prime} \mathrm{E}\right), 530-585 \mathrm{~m}, 19$ Mar 1976, NMN7, Cr 4904
 Papanui Canyon NE of Taiatoa Ilcad $\left(45^{\circ} 46^{\prime} \mathrm{S}\right.$ $171^{\circ} 03^{\prime} \mathrm{E}$), 660 m . I Scp 1976, NMN/ Cr8I70(I male, $5.7 \mathrm{~mm})$. USNS E:ltunm stn $33 / 2145\left(49^{\circ} 07^{\prime} \mathrm{S}\right.$,

Figure 6. Lophopagurus lacertosus (Henderson), lectotype, from Challenger stn 166, off New Zealand, BMNH 88:33. A, shield and cephalic appendages; B, ehela and earpus of right cheliped (dorsal view), C, ehela and carpus of left cheliped (dorsal view); D, right 2nd pereopod (lateral view); E, left 3rd percopod (lateral view); F, anterior lobe of sternite of 3 rd percopods; G, telson. Seales $=5 \mathrm{~mm}(A-E)$ and $3 \mathrm{~mm}(F, G)$.
$172^{\circ} 00^{\prime} \mathrm{E}$), 384-397 m, 23 Mar 1968, NHRM 16679, RMNH D 40427 (4 males, 3 females, $4.7-7.2 \mathrm{~mm}$). USNS Eltanin $\operatorname{stn} 16 / 1426\left(51^{\circ} 05^{\prime} \mathrm{S}, 166^{\circ} 22^{\prime} \mathrm{E}\right)$, 428$439 \mathrm{~m}, 19$ Fcb 1965, USNM 244452 ($1 \mathrm{male}, 6.0 \mathrm{~mm}$). East Campbell Is. Rise ($51^{\circ} 47^{\prime} \mathrm{S}, 168^{\circ} 19^{\prime} \mathrm{E}$), 687-695 m, 19 Jan 1977, NMNZ Cr4903 (1 male, 1 ovigerous female. $6.2,7.6 \mathrm{~mm}$). USNS Elianin $\operatorname{stn} 32 / 1989$ ($53^{\circ} 29^{\circ} \mathrm{S}, 169^{\circ} 48^{\circ} \mathrm{E}$), 589-594 m, I Jan 1968, USNM 244454 (1 male, 3 females, 4.9-5.9 mm).

Redescription. Shield slightly broader than long to longer than broad; anterior margin between rostrum and lateral projections concave. Rostrum obtusely triangular, acute or bluntly rounded, sometimes terminating in minute spinule. Lateral projections broadly rounded, with 1 or occasionally 2 submarginal spinules.

Ocular peduncles $1 / 2-2 / 3$ length of shield, moderately stout, with corneae slightly dilated: dorsomesial surface with row of tufts of setac. Ocular acicles narrowly and acutely triangular, with strong submarginal spine; separated basally by slightly less to slightly more than basal width of 1 acicle.

Antennular peduncles overreach ocular peduncles by almost entire length of ultimate segment. Ultimate segment with tuft of setae at dorsodistal margin and 2 rows of widely-spaced tufts of setae on dorsal surface.

Antennal peduncles overreach ocular peduncles by $1 / 2-2 / 3$ length of ultimate segment. Fifth and fourth segments with scattered tufts of setae. Third segment with strong spine at ventrodistal angle. Second segment with dorsolateral distal angle produced and terminating in strong spine, mesial margin with 2 to several small spines; dorsomesial distal angle with strong spine. First segment with small spine at laterodistal margin. Antennal acicle considerably longer than ocular peduncles, reaching beyond proximal half of ultimate peduncular segment. Antennal flagella usually not overreaching right cheliped; 1-3 very short setae every 1 to several artieles.

Right cheliped with dactyl slightly shorter to slightly longer than palm. Dactyl triangular and slightly elevated in midline, dorsal surface often covered with low, sometimes spinulose protuberances or tubercles, less prominent in large males; dorsomesial margin with row of closelyspaced small tubercles. Palm $3 / 4-4 / 5$ length of carpus; dorsomesial margin depressed and armed with single or double row of small spincs or tubercles, dorsomesial component weakly concave, armed with low, blunt or spinulose tubercles and delimited dorsally by moderately broad spinulose or tuberculate ridge; dorsal surface often covered with low, blunt or spinulose
tubercles, sometimes only granules, occasionally almost smooth, dorsal midline with single or double row of somewhat stronger spines, spinulcs or tubereles; fixed finger with narrow to broad ridge of blunt or spinulose tubercles near cutting edge and frequently also small spinules or tubercles on dorsal surface laterally; dorsolateral margin with row of blunt or acute spines or tubercles. lateral surface convex or angular, often covered with blunt to spinulose tubercles or granules and frequently with 1 stronger row of tubercles, also scattered tufts of setae. Carpus slightly longer than merus; dorsomesial margin with double or triple row of strong spines becoming widely divergent in distal half, dorsal midline with 1 or 2 rows of acutc, smaller spines, dorsal surface laterad of midline with numerous small spines or spinulose tubercles, distal margin with few spines; lateral facc spinulose or tuberculate and with tufts of setae, ventrolateral margin with row of blunt or acute spines or tubercles. Merus with 1 or 2 strong spines at dorsodistal margin, dorsal surface with transverse rows of long setae, extending onto lateral and mesial faces; ventrolateral margin with row of acute spines, ventromesial margin with 2 or 3 spines in proximal half. Ischium with row of small spines on ventromesial margin, laterodistal margin with small spine and tufts of setae ventrally.

Left cheliped with dactyl $21 / 2-3^{1 / 2}$ times longer than palm; dorsal surface of daetyl with 1 or 2 rows of tufts of setac and sometimes also low protuberances or tubercles in proximal half, dorsomesial margin unarmed or with row of small spines or spinulose tubercles in proximal half. Palm $1 / 3-1 / 2$ length of carpus; st rongly elevated in dorsal midline and armed with row of small spines or tubercles extending onto fixed finger, dorsolateral margin with closely-spaced, compressed tubercles, dorsolateral surface unarmed or with minute to moderately well-defined, blunt or spinulose tubercles, dorsomesial surface with scattered small spines or spinules, dorsomesial margin with row of broad, sometimes spinulose tubereles. Carpus slightly longer than merus; dorsolateral margin with row of spines. strongest at distal angle, dorsomesial margin usually with row of smaller spines and transverse rows of long setae; lateral face frequently spinulose dorsally and with 1 or 2 strong spines near distal margin, spinulose protuberances or small spincs ventrally, ventrolateral margin with row of spinules or spines. Merus with row of tults of stiff setae on dorsodistal margin, dorsal surface with several transverse rows of stiff setae
extending onto lateral and mesial faces; ventrolateral margin with row of strong acute spines, ventromesial margin with 2 or 3 strong spincs in proximal half. Ischium with row of small spincs on ventromesial margin; laterodistal margin sometimes with 1 spine ventrally obscured by tuft of setac.
Ambulatory legs gencrally similar from right to left, or dactyl of left 3rd slightly different. Dactyls in dorsal view strongly twisted; in lateral view, slightly curved ventrally; usually at least $11 / 2$ times length of propodi; dorsal margins with transverse rows of stifl setac, mosial faces each with dorsal and ventral row of corncous spinules or stiff setac, ventral margins cach with row of 11-2I corncous spinules; lateral faces often with median longitudinal sulcus and sometimes dorsal row of low protuberances in males, frequently lateral face slightly concave in remales. Propodi slightly longer than carpi; dorsal surfaces with transverse, sometimes spinulose, ridges and tufts of sctac, ventral surlaces with transverse ridges and short to long setac. Carpi $1 / 2-2 / 3$ length of meri; dorsal surfaces of 2 nd (occasionally only right) and frequently also 3rd each with row of strong spines, slightly less prominent on 3rd. Meri with transverse ridges and tufts of setac on dorsal surfaces, ventral margins each with row of spincs, at least in distal half (2 nd), or low protuberances (3 rd) and tufts of sctac. Ischia with tufts of sctac on ventromesial margin.

Anterior lobe of sternite of 3 rd pereopods subsemicircular, anterior margin with long sctac and sometimes I or 2 small spinules. Fourth percopod with small preungual process at base of claw. Telson with posterior lobes oblique or rounded, terminal margins with lew strong spincs and numerous smaller spines extending onto lateral margins.
Colour. Unknown.
Distribution. Eastern New Zcaland from off Motuhora Island to Otago, western New Zcaland and Tasman Sea, and Campbell Island: ? Auckland Island (Yaldwyn, 1975); 139-840 m.

Affinities. As indicated in the discussion of L. crenatus, given the ranges of variation of scveral morphological characters observed in L. lacertosus the possibility exists that this species is conspecific with, and the senior subjective synonym of, L. crenatus. The two taxa presently are distinguished by the armature of the dactyl and fixed finger of the right chela, which are armed
with spinules, small tubercles or small spines in L. lacertosus in contrast to a broad row of coalesced tubercles in L. crenatus.
Despite the fact that Henderson (1888) considered L. lacertosus morphologically very close to L. namus, this species actually is more readily confused with L. thompsoni. Lophopagurus thompsoni shares distributional and morphological attributes with L. lacertosus. Both specics have the carpi of the second, and usually also the third percopods armed with a dorsal row of spincs. Lophopagurus namus, in contrast, has only one spine at the dorsodistal margin of these scgments. Lophopagurus lacertosus is readily distinguished from L. thompsoni by the dactyl of the 3 rd left pereopod. The dactyl of L. lacertosus is generally similar in size and shape to that of the left 2 nd . The lateral surface is flattened, very faintly concave, or even convex and frequently is marked by a longitudinal sulcus in the proximal third. In L. thompsoni the dactyl of the left 3 rd percopod is short, broad and distinctly different from the 2 nd: the lateral face is markedly concave.

Remarks. Henderson (1888) considered L. natus to be only a dwarf varicty of L. lacertosus, and for this reason in some subsequent reports, authors (c.g., Thomson, 1898; McCulloch, 1913; Zarenkov, 1967) combined the two taxa. Forest and dc Saint Laurent (1967) elcvated the former to full specific rank when they transferred it, together with L. lacertosus, to the genus Pylopagurus. We concur that both represent distinct taxa.

A common intertidal hermit crab found in and around Sydney, Australia has frequently been referred to as Pagurus (or Eupagurus) /acertosus (i.c., Pope, 1947; Dakin et al., 1948, 1953. 1960; Griffin, 1967: Healy and Yaldwyn, 1970). This species was recently described as Pagurixus jerviensis McLaughlin and Haig, a species bearing only gross similarities to Henderson's taxon (McLaughlin and Haig, 1984). Liszka and Underwood (1990), in a study of gastropod prefcrence, state that their study animal was Pagurus lacertosus, a small crab abundant in the intertidal and subtidal habitats in the Sydney region. Acknowledgement for taxonomic identification is given to the Australian Muscum and "Dakin (1953)" (for Dakin et al., 1953) is cited for ecological information. Their material was not depositcd in the Australian Museum and consequently is not available for recxamination (P.B. Bercnts, pers. comm.). In view of the common misidentification that has so frequently
been made of one local intertidal species, we questionably assign Liszka and Underwood‘s (1990) taxon to Pagurixus jerviensis.

In his checklist of decapod and stomatopod Crustacea from the Auckland and Campbell Islands, Yaldwyn (1975) ineluded Pagurus ef. lacertosus (Henderson), with the accompanying note that aecording to Pike (1961) P. lacertosus and P. thompsoni were synonymous. The identity of Yaldwyn's specimen(s) has not been determined; however, currently available distributional records do not indicate that L. thompsoni is found as far south as the Subantarctic, whereas L. lacertosus is.

Lophopagurus nanus (Henderson, 1888)
Figures 1B, D, F; 7
Eupagurus lacertosus var. nana Henderson, 1888: 64, pl. VIl fig. 1. - Ortmann, 1892: 306. - Whitelcgge, 1889: 231. - 1900: 169. - Alcock, 1905: 175.

Eupagurus lacertosus, var. Nana. - Grant (in Saycc), 1902: 155.

Pagurus lacertosus var. nana. - McCulloch, 1913: 346.

Pagurим пана. - Halc, 1927: 94, fig. 90.
Eupagurus lacertosus nana. - Hale, 1941: 279.
Pylopagurus namus. - Forest and de Saint Laurent, 1967: 145. - Mclaughlin, 1981a: 3.
Eupagurus lacerlosws. - Zarenkov, 1967: 182 (in part) (see remarks).

Lophopagurus namus. - McLaughlin, 1981a: 3 (by implication).
Type material. Syntypes: HMS "Challenger" stn 162, off East Moncocur Island, Bass Strait, BMNH 88:33 (4 males, $1.8-3.3 \mathrm{~mm}$; 1 female, $2.0 \mathrm{~mm}, 1$ ovigerous femalc, 1.7 mm).
Other material. Australia, Qld. 20 mi NNE of Double 1sland Pt, AM E6277 (4 males, 6 ovigerous females, $1.5-2.6 \mathrm{~mm}$). Off coast of NSW, 128 m , USNM 64543 (3 males, 1 femalc, 1 ovigerous female, $1.6-2.4 \mathrm{~mm}$). HMAS "Kimbla" stn K7/73-57 (38 $18.6^{\circ} \mathrm{S}$, $146^{\circ} 40.8^{\prime}$ E), $64 \mathrm{~m}, 25$ Nov 1973, NMV J11761 (I ovigerous female, 2.9 mm). HMAS "Kimbla" stn K7/7362 ($39^{\circ} 00.3^{\prime} \mathrm{S}, 146^{\circ} 45.9^{\prime} \mathrm{E}$), $66 \mathrm{~m}, 26$ Nov 1973, NMV J11383 (1 male, 4.1 mm). $1 / 4 \mathrm{mi}$. off Newhaven, Western Port, Vic., T. Crawford, 6 Apr 1963, NMV J14597 (1 female, 1.9 mm). Simpsons Bay, Tasmania, 14-27 m, Jul 1926, USNM 64596 (1 male, 5.4 mm). Simpsons Bay, D'Entrecasteaux Channcl ($43^{\circ} 17.7^{\prime} \mathrm{S}$, $147^{\circ} 18^{\prime} \mathrm{E}$), M. Ward, $14-22 \mathrm{~m}$, Aug 1926, AM P8652 ($1 \mathrm{malc}, 5.0 \mathrm{~mm}$). Southeast Australia, NMV J14595 (1 male, 5.1 mm).
Redescription. Shicld longer than broad; anterior margin between rostrum and lateral projections concave; posterior margin truncate. Rostrum broadly triangular, usually without ter-
minal spinule. Lateral projections broadly rounded, with small terminal margin spinule.
Ocular peduneles $1 / 2-2 / 3$ shicld length, with corneae slightly inflated, dorsomesial face with row of tufts of stiff setae. Ocular acieles narrowly and acutely triangular, with moderately small submarginal spine; separated basally by slightly less to slightly more than basal width of I aciele.
Antennular peduneles when extended overreach ocular peduncles by $1 / 2-2 / 3$ length of ultimate segment. Ultimate segment with tuft of setae adjacent to dorsodistal margin.

Antennal peduneles reaching to distal margin of corneae or slightly beyond. Fifth and fourth segments with few seattered setac. Third segment with small spine at ventrodistal margin, partially obscured by tuft of long, stiff setac. Second segment with dorsolateral distal angle produced, terminating in strong spine, mesial margin with 1-3 additional smaller spines, lateral margin usually with 1 additional spine and several long setae; dorsomesial distal angle with strong spine. First segment with spine at laterodistal margin. Antennal aeicle reaching to distal margin of cornea or slightly beyond and terminating in strong spine; mesial margin with row of tufts of setae. Antennal flagellum with occasional short seta every several artieles.

Right cheliped with dactyl slightly shorter than palm; terminating in corneous claw and slightly overlapped by fixed finger. Dorsal surface of daetyl with low, sometimes spinulose tubereles or protuberances and short setae, dorsomesial margin with row of small, sometimes spinulose tubereles, often becoming obsolete distally; mesial face and ventral surface with seattered tufts of setae. Palm $2 / 3-3 / 4$ length of earpus; dorsomesial margin depressed and armed with single or double row of small spinules, dorsomesial segment often with weakly tubereulate surface, delimited above by single or double row of small spinules or spinulose tubereles, dorsal surface of palm weakly tuberculate and with row of spinules or tubercles laterad of midline, fixed finger with dorsal surface weakly tubereulate and with longitudinal, tuberculate ridge adjacent to cutting edge developing in larger specimens ($\mathrm{SL}>2.5 \mathrm{~mm}$), dorsolateral margin of palm and fixed finger with row of small spines or spinulose tubereles often decreasing in size proximally; lateral face convex and weakly tuberculate or with transverse ridges and seattered short setae, ventral surface also weakly tuberculate. Carpus approximately equaling length of merus; dorsomesial margin with row of acute spines and adjacent second, oblique row of

slightly smaller spines, dorsodistal margin with 1 or 2 small spines, dorsal surface with additional I or 2 rows of spines laterad of midline and transverse rows of tufts of setae, extending onto lateral surface, dorsolateral margin not delimited; ventrolateral margin often with row of small spinules distally, ventral and mesial surfaces with scattered tufts of setae. Merus usually with 1 acute spine at dorsodistal margin, dorsal margin with transverse ridges and tufts of long setae, extending onto lateral and mesial faces; ventrolateral margin with row of acute spines, strongest distally, ventromesial margin with 2 or 3 spines in proximal half. Ischium frequently with 1 or 2 spines on ventromesial margin proximally.

Left cheliped with dactyl $21 / 2-3$ times length of palm, terminating in strong corneous claw, overlapped by fixed finger; surfaces of dactyl with scattered tufts of setae. Palm 31/4-31/2 times shorter than length of carpus; dorsal surface elevated in midline into prominent crest, armed with row of spines, becoming obsolete near tip of fixed finger, dorsolateral margin crenulate and depressed to ventral position distally on fixed finger, dorsolateral surface smooth, minutely tuberculate or with very low protuberances and tufts of setae, dorsomesial surface often with few low tubercles and numerous tufts of sctae, dorsomesial margin with few low tubercles. Carpus approximately equaling length of merus; dorsal surface with somewhat oblique row of acutc spines extending from dorsolateral margin proximally to dorsomesial margin distally, dorsomesial margin also often with 2 or 3 small spines or protuberances proximally, dorsodistal margin with 1 or 2 spines; mesial face with scattered tufts of setae; lateral face usually with 1 small spine on distal margin dorsally and 1 or 2 spines near distal margin ventrally, ventrolatcral margin often with few small spinules or tubercles; ventral surface with numerous tufts of long setae. Merus with transverse ridges and tufts of long setae on dorsal surface and extending onto mesial and lateral faces; ventromesial margin with 1-3 blunt or acute spines proximally, ventrolateral margin with row of acute spines. Ischium usually with row of small spines on ventromesial margin.

Second and 3rd percopods similar. Dactyls exceed length of propodi by $1 / 4-1 / 3$ own length; each terminating in strong corneous claw; dorsal surfaces with tufts of thick, sometimes spine-like bristles, lateral faces each with median longitudinal sulcus and tufts of setae dorsally and ventrally, mesial faces each with row of corneous spinules dorsally and ventrally; ventral margins each with row of 8-15 corncous spines. Propodi exceeding carpi by $1 / 3-1 / 2$ own length; ventral distal angles each with 2 or 3 corneous spinules and row of corneous spinules on ventral surface, dorsal surfaces with tufts of setae. Carpi $1 / 2-3 / 4$ length of meri; dorsal surfaces with low protuberances and tufts of long setae, 1 or rarely 2 spines at dorsodistal margins. Meri with low protuberances and tufts of long setae on dorsal surfaces, ventral surfaces with tufts of setae or low protuberances proximally, often becoming small spinules distally (2nd) or with only tufts of setae (3rd). Ischia with tufts of setae dorsally and ventrally.

Sternite of third percopods with anterior lobe subscmicircular, anterior margin with long setae. Fourth pereopod with small preungual process at base of claw. Telson with posterior lobes generally symmetrical; terminal margins oblique, each with 3 or 4 prominent spines and smaller spines extending onto lateral margins.

Colour. Unknown.

Affinities. Lophopagurus nanus is quite similar to L. crenatus in having a single row of spines on the carpus of the left cheliped. It differs from L. crenatus in lacking spines on the carpus of the 2nd right pereopod. Lophopagurus nanus also is superficially similar to L. foresti, but is immediately distinguished from that species by having the left 2 nd and 3 rd pereopods similar; the lateral face of the dactyl of the 3rd left is flattened or convex and often provided with a longitudinal sulcus. The left 2 nd and 3 rd pereopods of L. foresti are distinctly dissimilar; the lateral face of the dactyl of the 3rd is markedly concave.
Distribution. South-eastern Australia and Tasmania; 14-128 m.
Remarks. Halc (1927), without comment, clevated Henderson's var. nana to full specific rank

[^0]as P'agurus nana; however, in his later publication (Hale, 1941) he again cited this taxon as a subspecies of L. lacertosws. Although Henderson (1888) described L. Hamus as having the characters ol L. lacertosus and dillering only in size, the two taxa do exhibit significant morphological differences. This fact was recognized by Forest and de Saint Laurent (1967) when they transleared both specics to l'ylopagurus.
Lophopagurns mames is abundant in the waters oll southern Australia, and is represented in the collections of the Museum ol Victoria by several hundred lots. These lots have been examined by one of us (S.W. Gunn) but, in the interest ol conciseness, are not listed under materials examined.

Australeremis McLaughlin, 1981
Viupagurns sensu lato. - Melin, 1939: 29 (in part, sec remarks).
Iylopugurws. - Forest and de Saint Laurent, 1967: 145 (in part), not P'ylonagurras Milne Edwards and Bouvier, 1891. - Miyake, 1978: 119 (in part). MeLaughlin, 1981a: 2 (in pari) see remarks.

Austrulepemus Melaughlin, 1981a: 4. Type species, by original designation, Elnpagurus conkii Fillol. Ciender masculine.

Diaguosis. Eleven pairs phyllobranch gills. Ocular acicles triangular, with well developed submarginal spine; separated basally by $1 / 2$ to entire basall width of 1 acicle. Sternite of 3 rd maxillipeds usually with small spine or spintule on either side of midlinc. Basal antemular segment with strong lateral spine; ventrodistal margin produced into clongate lobe. Maxillute (Fig, 8А. B) with external tobe of endopod well developed. internal lobe with I or 2 terminal bristles. Maxilla with proximal lobe of scaphognathite narrow (Fig. 8C, D). First maxilliped (Fig. 8E, F) with exopod slender to slightly broadened basally. Third maxilliped with well developed erista dentata and very strong accessory tooth; merus with or without small spine at dorsodistal margin, carpus unarmed.

Right cheliped often not appreciably larger than lelit. Chela of right subrectangular to subtriangular; dorsal surface of palm circumseribed by row ol dorsomesial, dorsoproximal and dorsolateral marginal spines: angle ol propodalcarpal articulation approximately 15° from horizontal plane. Left chela with dactyl elongate and considerably narrower thim fixed finger; dorsolateral margin of chela elevated, at least proximally, and Irequently expanded; angle ol propodal-carpal articulation variable. Sternite
of 3 rd percopods with semisubcircular, subovate or slender rod-like anterior lobe. Fourth percopods with propodal rasp consisting of single row ol corncous scales; dactyl with very to modcrately short claw and minute preungual process at basc.

Abdomen frequently straight or only weakly flexed. Uropods symmetrical or asymmetrical. Tetson with transverse suture; posterior lobes symmetrical or subequal, terminal margins straight, ollique or rounded, armed with 1-4 strong, often blunt spines and few smaller spines or spinules, lateral margins each with undifferentiated, usually weakly calcilied plate. Males without paired pleopods, with 3 unequally biramous pleopods. Females with paired Ist pleopods modified as gonopods, with 4 unpaired biamous pleopods, 2nd-4th with both rami well developed. 5 th with endopod reduced.
Distrilmuion. Japan, Bonin Islands. East China Sca; New Zealand; 12-300 metres.
Etymology' From the Latin australis, meaning southern and eremus a hermit.
Remarks: Mclin (1939) subdivided Enpagurns Brandt into a number of subgenera, among them the nominal subgenus E:upagurus. In this taxon, Melin mentioned only Eiapaguras (Eupagurus) triverratus: Ottmann. Although Melin had both male and female specimens of this species at his disposisl, he apparently overlooked the presence of paired lirst pleopods in the lemales.

Forest and de Saint Laurent (1968) provided a diagnosis of Pyypagurus based on Milne Edwards and Bouvier`s (1893) description of the genus. However. in their original generic diagnosis Milne Edwards and Bouvier (1891) included only two species, Py/opagurus discoidalis: (A. Milne Edwards) and P. ungulatus (Studer). Neither ol these species was mentioned by Forest and de Saint Laurent (1968) in their discussion. Miyake (1978) designated P. discoiHatis as the type of the genus; however, the only other species cited was the Japanese P. serpulophilus. a species we believe to be the junior subjective synonym of A. triserratus.

In the initial diagnoses ol pylopagurid-like genera (McLaughlin, 1981a), the key character employed to distinguish Pyopagures sensu stricto liom other genera, including Ausitaleremus, was uropod symmetry. Specimens of A. cookii available at the time all had coiled abdomens, suggestive of gastropod shell usage. In all cases the uropods were markedly asymmetrical. In contrast, available specimens of P. wewari

Figure 8. Australeremus. A, C, E, A. laurentae sp. nov., A, maxillule; C, maxilla; E, first maxilliped. B, D, F, A. stewarti (Filhol), B, maxillule; D, maxilla, F, first maxilliped. Scale $=1.0 \mathrm{~mm}(A, C, E)$ and $0.5 \mathrm{~mm}(B, D$, F).
had elongate, straight abdomens that suggested scaphopod shell or worm tube usage. The uropods of these specimens were uniformly symmetrical. We have now had the opportunity to examine representatives of A. cookii removed from serpulid worm tubes. The uropods of these specimens vary from slightly asymmetrical to entirely symmetrical. Quite obviously, uropod symmetry, at least in A. cookii, is strongly influenced by habitat selection. Pylopagurus s.s. is more reliably distinguished from Australeremus by the shape and/or armature of the chelae: the dorsolateral margin of the left chela level or depressed and unarmed or minutely spinulose in

Pylopagurus but elevated, often inflated, and strongly spinose in Australeremus. The dorsomesial, dorsoproximal and dorsolateral margins of the right chela, although distinctly circumscribing the palm in both genera, are unarmed in Pylopagurus but spinose in Australeremus.

With the present emendation of the generic diagnosis of Australeremus, it becomes clear that Pylopagurus stewarti shares more generic characters with species of Australeremus than with Pylopagurus s.s. and is transferred herein to the former genus. McLaughlin's retention of P. serpulophilus in Pylopagurus was based entirely on Miyake's (1978) description and illustration.

We have now had the opportunity to examine specimens of Ortmann's (1892) Eupagurus triserratus, a species we believe to be the senior subjective synonym of Miyake's (1978) taxon, and find that it too should be assigned to Australeremus.
As among species of Lophopagurus, intrageneric similarities and intraspecific variations are common in species of Australeremus. Similarities include the usually marked rotation of the propodal-carpal articulation of the left chcla, and in A. cookii, A. kirkii, and A. cristatus a prominent patch of red on the dorsal surfaces of the chclae at the point of articulation of dactyl
and fixed finger. Intraspecific variations involve, among others, the strength of the armature of the chelae, observed particularly in A. stewarti and A. eltaninae; the armature of the dactyls and propodi of the ambulatory legs, which varies from unarmed to strongly spinose dorsal margins in A. cookii; and size-related carpal length-width ratios of A. stewarti. Australeremus cookii, A. laurentae n. sp., and A. stewarti commonly inhabit bryozan tubes (Taylor et al., 1989, PMcL pers. obs), whereas A. triserratus is often found in serpulid worm tubes. Habitat has been found to strongly affect uropod symmetry. at least in the case of A. cookii.

Key to species of Australeremus

1. Dorsal surfaces of chelac covered with elosely-spaced, flattencd tubercles
. 2

- Dorsal surfaces of chelac with spincs or well developed tubercles . . . 3

2. Ventrolateral margin of carpus of right cheliped armed with row of spincs or spinules; ventral margins of meri of 2nd pcreopods each with several spines . A. cookii

- Ventrolateral margin of carpus of right cheliped unarmed; ventral margins of meri of 2 nd pcrcopods unarmedA. laurentae

3. Dorsal margins of propodi of 3rd percopods each with row of spines

- Dorsal margins of propodi of 3rd pcreopods without row of spines . 4

4. Dorsal margins of carpi of 2 nd percopods cach with row of spines (dactyls with 13-17 corneous spines on ventral margins) A. kirkii

- Dorsal margins of carpi of 2nd percopods only with spine at dorsodistal angle and occasionally 1 spine in proximal half 5

5. Dorsal margins of dactyls of ambulatory legs unarmed . . A. triserratus

- Dorsal margins of dactyls of 2nd pereopods with spines or protuberances .6

6. Right cheliped (dorsal vicw) with chela rectangular, carpus width $<1 / 2$ length; ventrolateral margin of merus of left cheliped unarmed or with 1 small spine at distal angle . A. stewarti

- \quad Right cheliped (dorsal view) with chela subtriangular, carpus width $>2 / 3$ length; ventrolateral margin of merus of left cheliped with row of acute spines in distal half.
A. eltaninae

Australeremus cookii (Filhol)

Figures 9
Eupagurus Cookii Filhol, 1883: 67. - 1885b: 417. pl. 51 fig. 2.
Eupagurus cookii. - Thomson, 1898: 176 (? in part), ? pl. 20 figs 11-13 (sce remarks). - Alcock, 1905: 176 (list). - Chilton, 1911: 299. - Thompson, 1930: 270 (? in part, see remarks).
?Eupagurus stewarti. - Chilton, 1911: 298 (in part, see remarks under A. stewarti).
Pugurus cookii. - Gordan, 1956: 328 (list).
Pylopagurus cooki. - Forest and de Saint Laurent, 1967: 145. - MeLaughlin, 1981a: 4.
?"a hcrmit erab". - Morton and Miller, 1968: 577, fig. 215 (2) (see remarks under A. stewarti).
? Pylopagurus cooki. - Batham, 1969: 79. - Probert ct al., 1979: 381, 388 (list) (see remarks).
? Pagurus cooki. - Rainer, 1981: 37 (see remarks).
Australeremus cooki. - McLaughlin, 1981a: 4 (by implieation). - Schembri and McLay, 1983: 31 (in part), figs $10 a, b, I 1$ (see remarks).
? Australeremus cooki. --Sehembri, 1982: 865, figs 6. 7. - 1988: 93 (list). - Probert and Wilson, 1984: 389 (list). - Taylor et al., 1989: 1064 (see remarks).
Holotype. Not scen.
Material examined. USNS Eltanin stn 23/1716 ($37^{\circ} 35^{\prime} \mathrm{S}, 178^{\circ} 46^{\prime} \mathrm{E}$), $128-146 \mathrm{~m}, 28$ May 1966. USNM 244442 (1 female, 3.8 mm). RV Tangaroa, NZOI stn R

Figure 9. Australeremus cookii (Filhol), male from Eltanin stn 16/1431, USNM 244441. A, shield and cephalic appendages; \mathbf{B}, chela and carpus of right cheliped (dorsal view), C , chela and carpus of left cheliped (dorsal view); D, right 2nd pereopod (lateral view); E, left 3rd pereopod (lateral view); F, anterior lobe of sternite of 3rd pereopods; G , telson. Scales $=2 \mathrm{~mm}(A-E)$ and $\mathrm{I} \mathrm{mm}(F, G)$.

81, approximately 28 km N of Motuhora I. ($37^{\circ} 35.9^{\prime} \mathrm{S}$, $176^{\circ} 59.5^{\prime} \mathrm{E}$), 139-179 m, 20 Jan 1979, NMNZ Cr7403 (2 males, $1.7,3.4 \mathrm{~mm}$). RV Acheron stn BS 505 ($40^{\circ} 47^{\prime} \mathrm{S}, 174^{\circ} 10.5^{\prime} \mathrm{E}$), $73 \mathrm{~m}, 4$ Mar 1976, NMNZ Cr8348 (4 males, 2 females, $2.2-5.0 \mathrm{~mm}$). RV Tangaroa, NZOI stn R 30 ($41^{\circ} 31.4^{\prime} \mathrm{S}, 174^{\circ} 52.6^{\prime} \mathrm{E}$), 255-553 m , 15 Jun 1979, NMNZ Cr7403 (1 male, 2.8 mm). USNS Eltanin $\operatorname{stn} 23 / 1709$ ($43^{\circ} 31^{\prime} \mathrm{S}, 176^{\circ} 10^{\prime} \mathrm{W}$), 143-

186 m, May 24, 1966, USNM 244440 (1 male, 3.1 $\mathrm{mm})$. USNS Eltanin $\operatorname{stn} 16 / 1431\left(45^{\circ} 37^{\prime} \mathrm{S}, 170^{\circ} 58^{\circ} \mathrm{E}\right)$, 51 m, 23 Feb 1965, USNM 244441 (3 males, 2 females, $2.8-3.7 \mathrm{~mm}$). Mid-shelf off Otago Peninsula, P.J. Schembri, PML (13 males, 9 females, 1.9-5.0 mm). Dunedin, G.M. Thomson, AM G2127 (2 males, 2 females, 3.9-4.7 mm).

Redescription. Shield as long or longer than broad; anterior margin between rostrum and lateral projections concave; posterior margin truncate. Rostrum broadly triangular, terminating acutely. Latcral projections obtusely triangular, with small terminal spinulc. Posterior carapace with tufts of setae adjacent to cervical groove.

Ocular peduncles $3 / 4-4 / 5$ length of shield, corneac slightly dilated. Ocular acicles narrowly triangular, terminating subacutely and with strong submarginal spine; separated basally by $3 / 4-$ slightly more than basal width of 1 acicle.
Antennular peduncles when extended overreaching ocular peduncles by $1 / 2-3 / 4$ length of ultimate segment. Ultimate segment with 3 or 4 long setae at dorsolateral distal margin.
Antennal peduncles overreaching corneae by $1 / 4-1 / 2$ length of ultimate segment. Fifth and fourth segments with scattered setae dorsally and ventrally. Third segment with ventrodistal angle unarmed or with small spinulc on ventrodistal margin. Second segment with dorsolateral distal angle produced. terminating in acute spine, mesial margin with 2-5 accessory spines; dorsomesial distal angle with acute spine. First segment with small spine or spinule on lateral distal margin. Antennal acicle somewhat arcuate, reaching proximal third to hall of ultimate peduncular segment. Flagella with 2-4 long (>4 articles Iength) and 1 or 2 short setac every, or every second article, at least in proximal $2 / 3$.

Right cheliped with dactyl slightly longer than palm; terminating in corncous elaw and overlapped by fixed finger. Dorsal surface of dactyl covered almost completely with flattened tubercles, dorsomesial margin with row of compressed, blunt spines and few tufts of setae. Palm $1 / 2-2 / 3$ length of carpus; dorsomesial, dorsoproximal and dorsolateral margins, each with row of compressed, blunt or acute spines, jointed to completely circumscribe palm and fixed finger. dorsal surface of palm and fixed finger covered with flattened tubercles, midline slightly elevated to form low broad ridge, extending complete Iength of fixed finger, dorsomesial face of palm marked by deep, rectangular depressed arca, dorsolateral surface sloping to dorsolateral margin. Carpus with row of acute spincs on dorsomesial margin, dorsolateral margin not distinctly delimited, dorsal surface llattened and with few scattered spinules and spinulose ridges, some extending onto lateral face dorsally; ventrolateral margin with row ol'small, blunt spines or spinules; mesial face concave, particularly in
larger specimens. Merus approximately $2 / 3$ length of carpus; dorsodistal margin with 1 acute spine, dorsal surface with transverse rows of tufts of setae; ventromesial and ventrolateral margins each with row of spines. Ischium with row of spinules on ventromesial margin.

Left chcliped somewhat shorter than right, but nearly as massive; propodal-carpal angle of articulation $80^{\circ}-90^{\circ}$ from horizontal plane. Dactyl 3-4 times length of palm; terminating in corneous claw and overlapped by fixed finger. Dorsal surface of dactyl often with double row of small granules or protuberances near cutting cdge. dorsomesial margin with row of small spinules or tubercles and lew setac. Palm with dorsolateral margin expanded, strongly elevated proximally but becoming ventral in position distally on fixed finger, armed with row of strong, compressed, somewhat blunted spines, dorsolateral surface covered with low, flattencd tubercles, dorsomesial surface unarmed or with scattered small tubercles. dorsomesial margin with few low spinulose protuberances or blunt spincs. Carpus subtriangular in cross-section: dorsal surface with row of acute spines laterally and tufts of moderately long setac: ventrolateral margin sometimes with 2 or 3 blunt spines or tubercles distally; mesiodistal margin frequently with few to several spines. Merus with transverse ridges and tufts of setae on dorsal margin; ventrolateral margin with row of acute spines, strongest distally, ventromesial margin with row of spines, strongest proximally. Ischium with row of spinules on ventromesial margin.
Ambulatory legs generally similar from right to left. Dactyls slightly shorter (2nd) to slightly longer (3rd) than propodi: dorsal margins cach with row ol low protuberances, sometimes developed into distinct spines in large individuals $(S L>4.5 \mathrm{~mm})$, and tufts of moderate to long setae, lateral faces often with faint longitudinal sulcus, mesial faces of 2 nd unarmed or with dorsal row of corncous spinules, 3rd with dorsal and ventral rows of widely-spaced corneous spinules, ventral margins each with row of $9-15$ corncous spines. Propodi each with row of protuberances or spines and tufts of setac on dorsal surface, ventral margins each with row of small corncous spinules. Carpi of 2 nd with row of spines on dorsal margin, occasionally reduced or lacking on left; 3rd with dorsodistal spine, less frcquently 1 or 2 additional spines in proximal half, occasionally complete row of spines. Meri with sctac on dorsal margins, ventral margins each with 2 or 3 small spines in distal half (2nd) or unarmed (3rd) and with tufts of long setae.

Ischia unarmed, but with setae dorsally and ventrally.

Sternite of 3rd percopods with subovate or subquadrate anterior lobe provided with tuft of setae on anterior margin. Telson with terminal margins armed with few small and few larger spines toward external angles; posterolateral margins each composed of simple. calcified plate.

Colour. "Eyestalks and antennules white with some brownish markings; antennae red with narrow white bands; 2nd and 3rd maxillipeds vivid decp blue; chelipeds pale to dark brown with a red spot on the propodites; walking legs pale to dark brown." (Schembri and McLay, 1983; voucher photograph).
Distribution. Eastern New Zealand from Motuhora Island to Dunedin: 51-553 m.

Affinities. Australeremus cookii bears close superficial similarities to A. kirkii and A. crista$t u s$, particularly in the colour pattern of the chelae; however it may be distinguished from both of the latter species by the armature of the dorsal surfaces of the chelae. In A. cookii thesc surfaces are armed with flattened tubercles; in A. kirkii and A. cristatus these surfaces are armed with spines or spinulose tubercles. A second, and undescribed species is also characterized by flattened tubercles on the dorsal surfaces of the chelae. Australeremus laurentae is distinguished from A. cookii by the reduced armature on the ambulatory legs and the proportions of the dactyls and propodi of these appendages (also see Affinities under A. laurentac).

Remarks. Filhol's (1885b) illustration of A. coo$k i i$ (pl. 51 fig. 2) is inaccurate in several significant points.

1. The depression on the right chela is positioned more dorsolaterally than it actually is.
2. The left chela has a triangular appearance with an elevated crest in the midline; the propo-dal-carpal articulation is generally in horizontal plane. There is actually only a slight elevation to the midline of the chela and the propodal-carpal articulation is approximately 90° in all specimens we have examined.
3. Filhol's specimen (presumably a male) is shown with paired pleopods on the 3 rd to 5 th abdominal somites. Only unpaired pleopods are present on the lcft side, as in most adult pagurids.

Thomson (1898) redescribed E. cookii from specimens collected at Dunedin and Stewart

Island in south-eastern New Zcaland. Although in his text he refers to the chelipeds being covered with rounded granulations, his figures are more suggestive of spines (pl. 20 figs 11-13). We have examined Thomson's specimens from Dunedin (AM G2127) and confirmed their identity as A. cookii; however, none agrees with his figures. It is, therefore, possible that his specimens from Stewart Island represent another taxon, perhaps A. cristatus. We have not been able to confirm the identity of the mutilated specimen from Bounty Bay that he also referred to A. cookii.

Thompson (1930) stated that his specimens of Eupagurus cookii fell into two distinct groups. those agrecing with Thomson's (1898) description and those that agreed far better with Filhol's (I883. 1885b) description and figure. Thompson's (1930) "differential diagnoses" clearly substantiate his conclusions. Considering the brevity of Filhol's (1883; 1885b) descriptions and the inaccuracies of his figure, it is not surprising that Thompson proposed the group presumably representing Thomson's (1898) species would prove to be distinct. We have not been able to reexamine Thompson's (1930) collcction; however, his descriptions suggest that the group he attributed to Thomson's (1898) taxon was in fact A. cookii. Given the variability observed in the armature of the ambulatory legs in this species, Thompson's second group, agreeing with Filhol's figure, may also be A. cookii or may represent H. Milne Edwards' (1836) Pagunus cristatus ($=$ A. cristatus), a species occasionally confounded with A. cookii.

Batham (1969), Probert et al. (1979), Rainer (1981), Schembri (1982, 1988), Schembri and McLay (1983), Probert and Wilson (1984), and Taylor et al. (1989) presumably all reported on the same species. We have examined a voucher series of Schembri and McLay's (1983) "A. cooki" deposited at the Portobello Marine Laboratory and found both A. cookii and A. kirkii represented; Schembri's (1982) figures of the antennal flagellum agree equally well with both species. Four lots of specimens from the National Museum of New Zcaland (Cr4703, 4910) identified as A. cookii have proved to be A. cristatus. None of the aforementioned authors included cither A. kirkii or A. cristatus in their faunal lists. As all three species apparently show the red spot of colour on the palms of the chelipeds rcportedly characterist ic of A cookii, until each author's material is examined thoroughly, it will not be possible to confirm their reports of A. cookii.

Australeremus laurentae sp. nov.

Figures 8A, C, E; 10A-H
Pylopagurus "mauve antenna I". - Probert et al. 1979: 386.
Py/opagnnes sp. nov. - Schembri, 1982: 869, lig. 8.

Pylopagurus n. sp. - Schembri and McLay, 1983: 31, fig. 13. - Probert and Wilson, 1984: 389. Schembri, 1988: 93. - Taylor ct al., 1989: 1062.
Type material. Holotype. New Zealand, RV Acheron stn BS 490 approximately 10 miles SW ol Waitotara River ($39^{\circ} 57^{\prime} \mathrm{S}, 174^{\circ} 34^{\circ} \mathrm{E}$), 33-35 m, 2 Mar 1976, NMNZ Cr8241 (male, 3.0 mm).

Paratypes. Whangarei Harbour, North Island, New Zcaland, 27 Sep 1972 NMV 121016 (1 male, 3.3 mm). NE side main island, Open Bay Islands, G.D. Fenwick, 7-11 m, 5 Feb 1976, NMNZ Cr4197 (1 female, 3.1 $\mathrm{mm})$. RV Acheron stn BS 408 off Kopumiti P'. Whangaroa Harbour, 10-15m, 22 Fcb 1974, NMNZ Cr7399 (1 male, 3.3 mm). Bare Island. Hawkes Bay $\left(39^{\circ} 49^{\prime} \mathrm{S}, 177^{\circ} 02^{\prime} \mathrm{E}\right.$), C. Duffy, $15 \mathrm{~m}, 13$ Dec 1990 , USNM 244456. NHRM type colln 4282. RMNH D 40431 (7 males, 1 female with rhizocephalan, 3.1-3.9 mm). RV Acheron stn BS 490 approximately 10 mi . SW of Waitotara River Mouth ($39^{\circ} 57^{\prime} \mathrm{S}, 174^{\circ} 34^{\prime} \mathrm{E}$), 33-35 m, 2 Mar 1976, NMNZ Cr7401 (5 males, ? females, 3.0 mm). RV Acheron stn BS 488 approximately 18 miles S of Waitotara River Mouth $\left(40^{\circ} 09.5^{\prime} \mathrm{S}, 174^{\circ} 36^{\circ} \mathrm{E}\right), 82 \mathrm{~m}, 2 \mathrm{Mar}$ 1976, NMNZ Cr7400 (1 male, 1 female, $3.4,3.6 \mathrm{~mm}$). RV Acheron stn BS 500, off Port Gore, Marlborough Sounds ($40^{\circ} 57.5^{\prime} \mathrm{S}, 174^{\circ} 18^{\prime} \mathrm{E}$), 139-144 m, 3 Mar 1976. NMNZ Cr4913 (4 males, 5 females. 2 with rhizoeephalans, $1.6-3.8 \mathrm{~mm}$). Tawero Point, Pelorus Sound, K.W. Briden, 11.5-15 m, 6 Dee, 1989. NMNZ Cr34 (I female with rhizocephalan, 3.6 mm). Off South Trio Island, Admiralty Bay, 5 Apr, 1990, NMNZ Cr52 (I female, 2.1 mm). Clay Point, P. Fullerton, K. Bayden, $21 \mathrm{~m}, 8 \mathrm{Apr}, 1990$, NMNZ Cr5I (I male 4 females, 1 "intersex", $1.4-3.4 \mathrm{~mm}$). Off Mana I., Wellington. V. Hoggard, $21 \mathrm{~m}, 27$ Apr 1969, NMNZ Cr7398 (2 mates. 1 female, $1.8-2.2 \mathrm{~mm}$). USNS Eltanin $\operatorname{stn} 25 / 370$ $\left(43^{\circ} 22^{\prime} \mathrm{S} .175^{\circ} 20^{\circ} \mathrm{E}\right), 95 \mathrm{~m}, 19 \mathrm{Nov}$ 1966. USNM 244455 (1 ovigerous female, 4.0 mm). Hanson Bay. Chatham Islands ($44^{\circ} 00^{\circ} \mathrm{S}, 176^{\circ} 18^{\circ} \mathrm{E}$), $27 \mathrm{~m}, 27$ Jan 1954. NMNZ Cr4 199 (1 ovigerous female, 1.6 mm). USNS Eltanin stn 16/1431 (45 $37^{\circ} \mathrm{S}, 170^{\circ} 58^{\prime} \mathrm{E}$), 51 m , 23 Feb 1965, USNM 244462 (1 male, 3 females, $1.9-$ 3.0 mm).

Description. Shield as long or longer than broad; anterior margin between rostrum and lateral projections concave; anterolateral margin sloping; posterior margin truncate. Rostrum triangular, terminating in small spinule. Lateral projections broadly rounded, with submarginal spine. Posterior carapace with tufts of setae adjacent to cervical groove.

Ocular peduncles $3 / 4-4 / 5$ length of shield, corneac slightly dilated. Ocular acieles triangular.
terminating subacutely and with strong submarginal spine; separated basally by $3 / 4$-slightly more than basal width of 1 acicle.
Antennular peduncles when extended overreaching ocular peduncles by $1 / 2-3 / 4$ length of ultimate segment. Ultimate segment with 2 or 3 long setae at dorsolateral distal margin. Penultimate segment with few scattcred setae. Basal segment with spine on lateral face distally.

Antennal peduncles overreaching corneae by $1 / 2-3 / 4$ length of ultimate segment. Fifth and fourth segments with scattered setae dorsally and ventrally. Third segment with ventrodistal angle usually unarmed, occasionally with small spinule on ventrodistal margin. Second segment with dorsolateral distal angle produced, terminating in acute spinc, mesial margin with 2 or 3 accessory spines; dorsomesial distal angle with small spine. First segment occasionally with small spine or spinule on lateral distal margin, ventral margin produced, unarmed or with small spine laterally. Antennal acicle reaching to base of ocular peduncles, terminating in acute spine, ornmaneted with numerous tufts of setac. Flagella with 3 or 4 very long (>5 articles length) every 1 or 2 articles proximally, every 2-4 articles distally.

Chela of right cheliped subrectangular in dorsal view; dactyl $1 / 2-2 / 3$ length of palm; cutting edge with row of calcarcous teeth in proximal $1 / 5$, corneous teeth distally, terminating in corneous claw and overlapped by fixed finger. Dorsal surface of dactyl with small, usually flattened tubercles, often covering entire surface, dorsomesial margin with row of closely-spaced spines and few tufts of setac; mesial face and ventral surface with few tufts of setae. Palm $2 / 3-3 / 4$ length of carpus; dorsomesial, dorsoproximal and dorsolateral margins each with row of closelyspaced, blunt or acute spines joined to completely circumscribe palm and fixed finger, dorsal surface of palm and fixed finger generally level, covered with flattened tubercles, occasionally those of midline developed into low. tear drop-shaped spines: mesial, lateral and ventral surfaces unarmed. but with few scattered setae; cutting edge of fixed finger with row of calcarcous tecth, terminating in corneous claw. Carpus slightly longer than merus; dorsomesial margin with row of acute spines, dorsal surface flattened, with I or 2 spines near distal margin and row of spines laterad of midline, dorsolateral margin not distinctly delimited but with transverse ridges and tufts of setae extending onto lateral face dorsally; ventrolateral margin unarmed; mesial face weakly concave, unarmed but with scattered short setae; ventral surface

Figure 10. Australeremus laurentae sp. nov., male paratype, from Bare Island, Hawkes Bay, New Zealand, USNM 244456. A, shield and cephalic appendages; B, chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D, chela of left cheliped (dorsomesial view); E, right 2nd pcreopod (lateral view), F, left 3rd pcreopod (latcral view); G, anterior lobe of sternite of 3rd pereopods; H, telson. Scales = $3 \mathrm{~mm}(\mathrm{~A}-\mathrm{F})$ and $1 \mathrm{~mm}(\mathrm{G}, \mathrm{H})$.
with scattered, short setae. Merus with 1 acute spine at dorsodistal margin, dorsal surface with transverse rows of tufts of setae; ventromesial margin with 2 or 3 spines or spinulose tubercles in proximal half, ventrolateral margin with short row of acute spines in distal half. Ischium with row of tubercles or spinulcs on ventromesial margin.

Left cheliped somewhat shorter than right; propodal-carpal angle of articulation $80^{\circ}-90^{\circ}$ from horizontal planc. Dactyl $21 / 2-3$ times length of palm; cutting edge with row of corneous teeth, terminating in corneous claw and overlapped by fixed finger; dorsal surface usually with 2 or 3 irregular rows of small granules or spinules, dorsomesial margin with row of small spincs and few setae; ventral surface with scattered setac. Palm with dorsolateral margin strongly elevated proximally and armed with row of strong, compressed spines, decreasing in size only slightly on fixed finger, dorsal surfacc covered with usually low, flattened tubercles laterally but with only scattered small tubercles mesially, dorsomesial margin with 2 or 3 spinulosc protuberances; cutting edge of fixed finger with row of small calcarcous teeth interspersed with corncous tceth, terminating in corneous claw. Carpus triangular in cross-section; dorsal midline with row of very strong. acute spines and tufts of moderately long setae; messial and lateral distal margins often spinulose, surfaces with scattered tufts of setae; ventrolateral margin usually unarmed, ventromesial margin with few spinulose tubercles. Merus with transverse ridges and tufts of setae on dorsal margin; ventrolateral margin with row of acute spincs distally, ventromcsial margin with few spines or spinulose tubercles proximally. Ischium with row of tubercles or spinules on ventromesial margin.

Ambulatory legs generally similar from right to left. Dactyls shorter than propodi; broad proximally, tapering distally; terminating in strong, corneous claws; dorsal margins each with somewhat spinulose protuberances or small spines (2nd) or low protuberances (3rd) and tufts of setae, lateral and mesial faces each with faint longitudinal sulcus, ventral margins each with row of 8-12 corneous spines. Propodi each with row of low protuberances and tufts of setae on dorsal surface, ventral margins each usually with row of widely-spaced corneous spinules. Carpi each with spine at dorsodistal margin, 2nd (at least right) also with 1 spine in proximal half of dorsal margin. Meri unarmed, but with setae on dorsal and ventral margins. Ischia with setae dorsally and ventrally.

Sternite of 3rd pereopods with subsemicircular anterior lobe provided with tuft of setae on anterior margin; sternites of 4th and 5th pereopods frequently with row of thick setae. Uropods most frequently symmetrical. Telson with terminal margins armed with fcw small to moderately large spines near median cleft; posterolateral margins each composed of simple, calcified plate.
Colour. (Few weeks in preservative): Chelae with dorsal surfaces uniformly orange. Dactyls of ambulatory legs white proximally, medially and distally separated by bands of colour, and with I coloured longitudinal striped on lateral and mesial face; propodi and meri each with median band of colour, propodi also with coloured median longitudinal stripe on mesial and lateral face; carpi with 2 or 3 longitudinal stripes of colour on lateral faces.
Etymology: This species is named for Michèle de Saint Laurent who first recognized its distinction from A. cookii.

Distribuion. Western and castern North Island to eastern South Island. New Zealand and Chatham Islands: 10-144 m.
Affinities. Australercmus laurentae is most closely allied to A. cookii. These species share the distinctive flattened tuberculate armature of the chelae that sets them apart from other species of the genus. Similarly, the dactyls of the ambulatory legs of both species may have spinose dorsal margins. Australeremus laurentae is most easily distinguished from A. cookii in the following characters. The palm of the right chela lacks the deep rectangular depression on the dorsomesial surface that is usually present in all but the smallest specimens of A. cookii. The dactyls of the 2nd and 3 rd pereopods of A. laurentae are shorter than the propodi; the carpi of the 2 nd pereopods (only) have 1 dorsodistal and 1 dorsoproximal spine; the ventral margins of the meri of both 2 nd and 3rd pereopods are unarmed. The ventrolateral margin of the carpus of the right cheliped in this species is also unarmed, whereas this margin in A. cook $i i$ is crenulate. tuberculate or spinulose. It also appears that A. laurentae lacks the dark red spot of colour at the articulation of the dactyls and fixed fingers of the chelae that is present in A. cookii, A. cristatus. and A. kirkii.

Remarks. Whereas variation in the armature of the pereopods appears highly variable in A. cookii, the flattened tubercles characteristic of the
dorsal surfaces of the palms of the chelae appears constant. However, in A. laurentae, the pereopodal armature appears to remain constant, but the tubercles in the midline of the dorsal surface of the palm of the right chela occasionally may be slightly produced to form very low, blunt tear-drop shaped spines.

The specimens of A. latrentae collected just north of Bare Island, Hawkes Bay were found on a small reef under a canopy of the brown kelp Ecklonia radiata (C. Agardh) J. Agardh. There was a sparse understorey of small algae (greens, browns and reds), the bryozoan Orthoscuticella sp . and the massive sponge Ancorina alata. The rock surface was heavily encrusted with coralline algae, which was thinly covered with a fine silt. The hermits were very common, occuring individually or in small clusters of up to 4 or 5 animals, either with their encrusted shells exposed on the surface of the rock or tucked away in small fissures and crevices [C. Duffy (collector), pcrs. comm.].

Australeremus cristatus (H. Milne Edwards)

Figure 11
Pagurts cristatus H. Milne Edwards, 1836: 269. 1837: 218. - 1848: 60. - Dana, 1853: 441. - Gordan. 1956: 329.

Eupagurus cristatus. - Miers, 1876: 62 (? in part; see remarks). - Hutton. 1882:264. - Filhol, 1885 b: 412. - Thomson, 1898: 184. - Alcock. 1905: 176.
?E:upagurus cookii. - Thompson. 1930: 270 (in part), see remarks.

Pylopagurms cristatus. - Forest and de Saint Laurent, 1967: 145. - McLaughlin, 1981a: 3.
?Lophopagurus cristams. - McLaughlin, 1981a: 3 (by implication).
Not Pagurus cristatus. - White, 1847: 59 (sce remarks).

Holotype. Not seen.

Material examined. RV Tangaroa, NZOI stn R 83 ($37^{\circ} 45.8^{\prime} \mathrm{S}, \quad 177^{\circ} 00.8^{\prime} \mathrm{E}$). $72-84 \mathrm{~m}, 20$ Jan 1979. NMNZ Cr8349 (1 male. 4.6 mm). RV Tangaroa. NZOI $\operatorname{stn} \mathrm{R} 86\left(37^{\circ} 51.8^{\circ} \mathrm{S}\right.$. $\left.176^{\circ} 56.8^{\circ} \mathrm{E}\right) 34-39 \mathrm{~m}, 21$ Jan 1979 NMNZ Cr8350, (1 female. 4.4 mm). Approximately 3 mi . offshore from Kaikoura, 30-60 m. 24 Jan 1967. NMNZ Cr3965 (8 males. 2 intersex, 9 females, $5.7-8.2 \mathrm{~mm}$). Off Kaikoura 1 mi .. I. Mannering, $75 \mathrm{~m}, 10 \mathrm{Mar}$ 1965. NMNZ Cr4116 (1 male, 9 females, 2 ovigerous females, $3.3-6.9 \mathrm{~mm}$) RV Acheron stn BS $557,5 \mathrm{mi}$. E of Steep Head. Banks Peninsula $\left(43^{\circ} 45^{\prime} \mathrm{S}, ~ 173^{\circ} 14^{\prime} \mathrm{E}\right) 66 \mathrm{~m}, 27 \mathrm{Sep}$ 1976, NMNZ Cr8351 (1 ovigerous female, 6.0 mm). RV Acheron stn BS 556. E of Pompeys Pillar ($43^{\circ} 52.5^{\prime} \mathrm{S} .173^{\circ} 06^{\prime} \mathrm{E}$), 44 m. 27 Sep 1976, NMNZ Cr4910(1 malc, 2 intersex - 1 with rhizocephalan parasite, I ovigerous female, 3.26.4 mm).

Redescription. Shield approximately as broad as long; anterior margin between rostrum and lateral projections concave; posterior margin truncate. Rostrum, triangular, acute, with minute terminal spinule. Lateral projections obtusely triangular, terminating in strong, marginal spine. Posterior carapace with tufts of setae adjacent to cervical groove.

Ocular peduncles short, $1 / 2-2 / 3$ length of shield; dorsal surface with row of tufts of setae; corncae very slightly inflated. Ocular acicles narrowly triangular, terminating subacutely, and with strong submarginal spine; separated basally by slightly more than basal width of 1 acicle.

Antennular peduncles exceed ocular peduncles by almost entire length of ultimate segment. Ultimate segment with tuft of long setae on dorsolateral distal angle.

Antennal peduncles overreach ocular peduncles by $1 / 2-2 / 3$ length of ultimate segment. Fifth and fourth segments with few scattered setae. Third segment with small spine at ventrodistal angle. Second segment with dorsolateral distal angle produced, terminating in strong spine, mesial margin with series (6-10) of small spines or spinules, lateral margin with few setae; dorsomesial distal angle with acute spine. First segment with small spine at laterodistal margin. Antennal acicle overreaching ocular peduncle by $1 / 4-1 / 3$ own length, terminating in small spine. mesial margin with row of tufts of setae. Antennal flagellum not reaching to tip of right chcliped; articles randomly provided with 1 or 2 short to moderately long (1-3 article length) setae.

Right cheliped with dactyl slightly longer than palm; cutting edge with row of calcareous teeth in proximal $2 / 3$, corneous teeth distally; terminating in small corneous claw; dorsomesial margin with row of closely-spaced small spines, dorsal midline only slightly elevated, dorsal surface covered with small, sometimes spinulose, tubercles, few tufts of setae near cutting edge; ventral surface with scattered tubercles. Palm approximately $2 / 3$ length of carpus; dorsomesial margin with row of strong, acute spines, dorsal surface covercd with closely-spaced spines or spinulose tubercles, midline with broad low longitudinal ridge separated from similar mesial ridge by longitudinal deprcssion, 1 or 2 strong spines ncar dorsomesial margin proximally; dorsal surface of fixed finger similarly armed with closcly-spaced small spinulose tubercles, dorsolatcral margin with row of very closely-spaced small, acute or blunt spines bccoming stronger near proximal margin; lateral face convex,

Figure 11. Australeremus cristatus (H. Milnc Edwards), female from off Kaikoura, New Zealand, NMNZ Cr3965. A, shield and cephalic appendages; B, chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal vicw); D, right 2nd pereopod (latcral view); E, propodus and dactyl of right 2nd pcreopod (mesial view); F, left 3rd pereopod (lateral view); G, propodus and dactyl of left 3rd pereopod (mesial view); H, anterior lobe of sternite of 3 rd pereopods; I, telson. Scales $=5 \mathrm{~mm}(\mathrm{~A}-\mathrm{G})$ and $3 \mathrm{~mm}(\mathrm{H}, \mathrm{I})$.
armed with rows of small spinulose tubercles extending onto ventral surface. Carpus approximately equaling length of merus; dorsomesial margin expanded or flared laterally and armed with row of closely-spaced strong spines, dorsal
surface with few tubercles distally, row of small spines laterad of midline, dorsolateral margin with single or double row of small spines or spinulose tubercles, extending onto lateral face, ventrolateral margin with row of small spines;
mesial face somewhat concave and with few low spines or spinulose tubercles; ventral surface with few tubercles. Merus with 1 or 2 strong spines at dorsodistal margin, dorsal surface with transverse rows of tufts of long setae; mesial face with few scattered tubercles ventrally, ventromesial margin with row of spines; ventral surface with scattered tubercles, ventrolateral margin with row of acute spines. Ischium with row of spines on ventromesial margin.
Left cheliped not reaching to base of dactyl of right. Dactyl 3 to 4 times length of propodus; dorsal surface strongly sloping ventrally displacing dorsomesial row of spines to ventral marginal position; cutting edge with row of corneous teeth, terminating in corneous claw and slightly overlapped by fixed finger; often with prominent hiatus between dactyl and fixed finger. Palm $1 / 4-1 / 3$ length of carpus; broadly expanded laterally; propodal-carpal angle of articulation approximately 80° from horizontal plane; dorsal surface of palm covered with closely-spaced small spines or spinulose tubercles. dorsolateral margin with row of closely-spaced, acute or blunt spines, 1 strong spine at point of propodal-carpal articulation, dorsomesial margin with few low protuberances or row of small spines; ventral surface with irregular rows of low spinules and scattered tufts of setae in lateral half. Carpus equaling or slightly shorter than merus; subtriangular in cross-section; dorsal midline with oblique row of strong spines and 1 or 2 irregular rows of smaller spines mcsially and laterally, distal margin dorsally, laterally and mesially often with continuous row of spines; lateral and mesial faces with scattered spines or spinulose tubercles, ventrolateral and ventromesial margins each with row of spines; ventral surface spinulose. Merus with transverse rows of tufts of setae on dorsal margin, extending onto lateral and mesial faces dorsally; ventrolateral margin with double row of spines proximally, becoming single row distally, ventral surface with scattered small spines or tubercles. ventromesial margin with row of strong spines. Ischium with row of small spines on ventromesial margin.
Second and 3rd percopods similar from left to right. Dactyls approximately half again length of propodi, terminating in strong corneous claws; in dorsal view, slightly twisted; in lateral view, curved ventrally; dorsal surfaces each armed with row of small calcareous spincs aeconspanied by corneous spinules, at least on 2nd; lateral surfaces each with faint longitudinal sulcus flanked dorsally and ventrally by low pro-
tuberances and tufts of setae, ventral margins each with row of 20-24 corneous spines, mesial faces each with dorsal and ventral single or double rows of corneous spines. Propodi approximately equaling length of carpi; dorsal surfaces each with row of strong corneous spines and single or double row of corneous spinules, ventral surfaces each with row of low protuberances and corneous spinules strongest on 2 nd . Carpi slightly shorter than meri; dorsal margins each with row of strong spines. Meri with transverse rows of tufts of setae on dorsal surfaces, ventral margins with 1 or 2 rows of spines (2 nd) and tufts of setae (3rd). Ischia each with row of spines on ventral margin (2nd) or tufts of setae (3rd).

Sternite of 3rd pereopods with anterior lobc semisubovate, often with 1 or 2 spines near anterior margin and row of long setae. Fourth pereopod without preungual process at base of claw. Telson with posterior lobes slightly asymmetrical; terminal margins oblique, armed with 1-3 strong and scveral short spines, lateral margins each with undifferentiated plate.
Colour. Unknown; however, in some of the preserved specimens examined, a red-orange patch of colour has been present at the articulation of the dactyls and fixed fingers of both chelae.

Distribution. Eastern New Zealand; 30-84 m.

Affinities. In chela configuration, A. cristatus is closely allied to A. cookii, and may havc been confounded with it by Thompson (1930). The armature of the chelipeds consists of flattened tubercles in A. cookii and spinulose tubercles or tuberculate spines in A. cristatus. However, the most reliable characters for separating these two species are found in the armature of the ventral margins of the dactyls of the 2 nd and 3 rd pereopods. In A. cristatus the ventral margins of the dactyls of both 2 nd and 3rd pereopods are armed with a row of 20-24 corneous spines. In contrast, the ventral margins of the dactyls have only 9-15 corneous spines in A. cookii.
Remarks. White (1847) compiled a list of specimens present in the collections of the British Museum. Included among the Paguridae was "Pagurus cristatus Edw.". In his catalogue of the stalk- and scssile-eyed New Zealand Crustacea, Miers (1876) presented a species description of A. cristatus translated from Milne Edwards' (1836) original description. However, in his remarks, Miers (1876:62) indicated that he had never seen specimens fitting Milne Edwards' description. Instead, he suggested that A. crista-
tus: might be identieal with Eupagurus Gayi Nieolet (= Pagurus comptus White), as described by Nicolet (1849) and illustrated in Gay's (1854: pl. i fig. 6) Atlas of Chile, or with Pagurus novizealandiac (Dana). In reference to White's (I847) speeimens, Miers (1876) stated that White's specimens agreed in all respeets with "Eu. novas-zealandiae" and placed White's taxon in symonymy with Dana's (1853) speeies. Alcoek (1905) similarly listed White's (1847) Pagurus cristatus as a synonym of Eupagurus novizealandiae; however, his aetion was based only on literature eitations. Obviously both White (1847) and Miers (1876) ineorreetly interpreted A cristatus, as Milne Edwards* (1836) species is elearly distinet from either Pagurus comptus or P. novizealandae.

Thompson (1930) provisionally assigned speeimens to A. cookii that he thought fell into two distinet groups. One group he believed agreed with Thomson's (1898) deseription of A. cookii, whereas the seeond group corresponded to Filhol's (1885b) figure of this species. Thomson's (1898) deseription of the flattened tubereles on the ehelac of A. cookii is aceurate: Filhol's (1885 b) figure is not. It is possible that Thompson's (1930) seeond group may have been A. cristalus, but we have not had the opportunity to verify this hypothesis.

As stated in the introduction. MeLaughlin's (1981a) assignment of Milne Edwards' (1836) speeies to Lophopagurus was ineorreet.

As previously noted, Batham (1969). Probert et al. (1979). Rainer (1981), Sehembri and McLay (1983), Probert and Wilson (1984), and Sehembri (1988) reported "A. cooki" (as Pagurus, Pylopaguris or Australeremus) from Stewart lsland and the Otago region. The reference material of "A. cooki" deposited at the Portobello Marine Laboratory and referred to by Sehembri and MeLay (1983) and Sehembri (1988) as "A. cooki" consists of both A. cookii and A. kirkii (personal examination). Four lots of speeimens from the National Museum of New Zealand (Cr4910, 7403) identified as "A. cooki" have been found to aetually represent A. cristalus. It is elear that considerable confusion has existed in the identifieation of these speeies whieh all apparently show the red spot of colour on the palms of the ehelipeds deseribed by Sehembri and MeLay (1983) as charaeteristie of A. cookii.

Four male speeimens of A. cristatus we examined from Kaikoura and east of Pompeys Pillar (NMNZ Cr3965, 4910) were found to have paired first pleopods modified as gonopods.

Only in one was parasitism by a rhizocephalan apparent. This individual also had one female gonopore. The remaining three males had well developed male gonopores and typieal male pleopods 3-5. Although "intersex" individuals (e.g., male and female gonopores present in the same individual) have been reported for a few speeies of diogenids and pagurids (e.g., Wenner, 1972; MeLaughlin, 1974) this is the first time that we have observed female gonopods developed in obviously non-parasitized males. However, as inferred by Hoggarth (1990), the absence of externa does not preelude infeetion by rhizoeephalan parasites.

Australeremus kirkii (Filhol)

Figure 12

Eupagurns Ḱrikii Filhol. 1883: 66.
Eupagurns Kirkii. - Filhol. 1885b: 416. pl. 5I, fig. 5.

Fupagurun kirkii. - Thomson. 1898: 175. pl. 20, figs 8-10. - Alcock. 1905: 176.
?Ellpagurus kirkii. - Thompson. 1930: 269 (sec remarks).

Eupagurus kirki. - Borradaile. 1916: 95.
Pagurus kirkii. - Gordan. 1956; 331.
Plopagurus kirkii. - Forest and de Saint Laurent, 1967: 145.

Pylopagnrus kirki. - McLaughlin, 1981a: 3.
?Lophopagurus kirk?. - McLaughlin, 1981a: 3 (by implication).

Not Eupagurus kirkii Miers. 1884: 267, pl. 28, fig. C. (= Eiupagurus hedleyi Grant and McCulloch, 1906).
Trpe malerial. Syntypes: New Zealand, Cook Strait, 1883, Muséum National d'Histoire Naturclle, Paris (malc, 4.4 mm ; female, 4.3 mm).
Other material. RV Tangaroa stn BS 916 (NZOI stn 0.662), off Spirits Bay ($34^{\circ} 25.0^{\circ} \mathrm{S}, 172^{\circ} 46.6^{\circ} \mathrm{E}$), $29 \mathrm{~m}, 3$ Feb 1981, NMNZ Cr7581 (4 males, 2 females, 2.5-3.6 mm). RV Tangaroa stn BS 871 (NZOI stn 0.617). off Rangaunu Bay ($34^{\circ} 49.6^{\circ} \mathrm{S} .175^{\circ} 15.0^{\prime} \mathrm{E}$), 23 m .27 Jan 1981. NMNZ Cr7591 (2 males, 1 female, 2.4-3.1 min). Bay of 1slands, $13 \mathrm{~m}, 7$ Dec 1973, NMNZ Cr7387 (i male, 2.4 mm). N side of Shakespeare Bay, $10 \mathrm{~m}, 26 \mathrm{Jan} 1978$, NMNZ Cr4112 (1 male, 1.7 mm). East Bay, outer Queen Charlotte Sound, C. Duffy, 12 m, 23 Oct 1989 NZCD Cr17. (I male, 1 female, 3.4. 3.9 mm). Off Papakura Point, East Bay, Queen Charlotte Sound, C. Duffy, $30 \mathrm{~m}, 15$ Jun 1990, USNM 244235, NHRM 16677. RMNH D 40430 (5 malcs, 1 female, i ovigerous fcmale, $2.3-5.7 \mathrm{~mm}$). South Trio Island, Marlborough Sounds, S. Cook and P. Fullerton, 30 m , 5 Apr 1990, NZCD Cr63 (4 males, 2 females, 1 ovigerous female, $2.0-3.5 \mathrm{~mm}$). Continental shelf off Otago Peninsula, P. Schembri, PML (3 males, 3.9-5.2 mm).
Redescription. Shield longer than broad;

Figure 12. Australeremus kirkii (Filhol), male syntype, from Cook Strait, New Zealand, MNHN. A, shield and cephalic appendages; B, chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D, right 2nd pereopod (lateral view); E, left 3rd pereopod (lateral view); F, propodus and dactyl of left 3rd pereopod (mesial view); G, anterior lobe of sternite of 3rd pereopods; H , telson. Scales $=3 \mathrm{~mm}$ ($\mathrm{A}=-\mathrm{F}$) and $1 \mathrm{~mm}(\mathrm{G}, \mathrm{H})$.
anterior margin between rostrum and lateral projections concave; posterior margin truncate. Rostrum triangular, acute, teiminating in small spine or spinule, occasionally with pair of
minute spinules. Lateral projections broadly triangular, with moderately well developed marginal or submarginal spine. Posterior carapace with tufts of setae adjacent to cervical groove.

Ocular pcduncles $3 / 4-4 / 5$ shield length, corneac slightly dilated. Ocular acicles acutely triangular, with strong submarginal terminal spine and occasionally accessory marginal spinc; separated basally by slightly less than basal width of I acicle.

Antennular peduncles overreach ocular peduncles by $1 / 2-2 / 3$ length of ult imate segment. Ultimate segment with 3 or 4 long setac at dorsolateral distal angle.

Antennal peduncles overreach ocular peduncles by $1 / 5-1 / 2$ length of ult imate segment. Fifth and fourth segments with scattered setac. Third segment with small spine at ventrodistal margin. Second segment with dorsolateral distal angle produced, terminating in simple or bifid spine, 1-5 accessory spines on mesial margin, I or 2 on lateral margin; dorsomesial distal angle with acute spine. First segment with small spine at laterodistal margin. Antennal acicle sometimes overreaching cornea, terminating in small spine, mesial face with row of tufts of long sctac. Antennal flagellum reaching nearly to tip of right cheliped; every second segment with 2 or 3 long (5-6 article length) setac and usually 1 or 2 short setac, at least in proximal $2 / 3$.

Right cheliped with dactyl slightly shorter to slightly longer than palm; terminating in corncous claw and slightly overlapped by fixed finger. Dorsomesial margin of dactyl with row of small spines, dorsal surface slightly elevated in midline and armed with row of small spines, surface mesially and latcrally with numerous small spincs or spinulose tubereles. Palm $2 / 3-3 / 4$ length of earpus; dorsomesial margin depressed, armed with row of moderately small spines, I strong spine at proximal angle dorsolateral and dorsoproximal margins each with row of spines; dorsal surface with numerous spinules or spinulose tubercles on both palm and fixed finger, palm with surface slightly elevated in midline and near dorsomesial margin and armed with irregular single or double row of small spines; lateral face somewhat convex and with few scattered tubercles and tufts of short setae; mesial face and ventral surface similarly armed and ornamented. Carpus slightly longer than merus; dorsomesial margin with row of moderately strong spines and few supplemental spines distally, dorsal surface with row of widely-spaced spines mesiad of midline and row of closely-spaced spincs laterad of midline, additional transverse, sometimes spinulose ridges and tufts of setae laterally, dorsolateral margin delimited only faintly by transverse, occasionally spinulose ridges extending onto lateral face; ventrolateral
margin with row of small spines or spinulose tubercles, as least in distal half; mesial face somewhat coneave, with spinulose tubercles dorsally, distal margin with spinulose tubercles decreasing in size ventrally. Merus with 1 or 2 strong spines at dorsodistal margin, dorsal surface with transverse ridges and tufts of long setae, extending onto lateral and mesial faces: ventromesial margin with row of small spines or spinulose tubercles, ventrolateral margin with row of somewhat stronger spines. Ischium with row of small spines or spinules on ventromesial margin.
Left cheliped with propodal-carpal angle of articulation $50^{\circ}-60^{\circ}$ from horizontal plane. Dactyl 3 to 4 times longer than palm, somewhat triangular in cross-section; terminating in corneous elaw; ventrally positioned dorsomesial margin with row of small spines, irregular single or double row of small protuberances or spinules on dorsal midline. Palm approximately $1 / 3$ length of carpus; dorsal surface convex but without median ridge or crest, dorsolateral margin with row of small spines, extending onto fixed finger, dorsal surface laterad of midline with scattered small spinules or spinulose tubercles, midine with small irregular row of spines extending onto fixed finger, dorsomesial surface with few small spines or spinulose tubercles, dorsomesial margin usually with 2 or 3 spinulose tubercles or spines. Carpus approximately cqual to length of merus: dorsolateral margin with row of strong acute spines. dorsomesial margin sloping distally and with row of small spines or transverse ridges accompanied by tufts of long setac; mesial face with seattered low tubercles and often 2-4 small spincs on distal margin dorsally, vent romesial margin with 1 or 2 rows of tubercles or tuberculate spines in distal half: lateral face with few spinulose tubereles and tufts of setae, laterodistal margin with few small spines in dorsal half: ventral surface often tuberculate and with transversc rows of tufts of setac. Merus with long setae on dorsal surface and dorsodistal margin: lateral and mesial faces each with few transverse rows of long setae, ventrolateral margin with row of small spines, usually strongest in distal half. ventromesial margin with few spines or spinulose tubercles. Ischium with row of small spinules on ventromesial margin.
Second and 3rd percopods similar from left to right. Dactyls exceeding length of propodi by $1 / 3-$ $3 / 4$ own length; terminating in strong moderately elongate corneous claws; dorsal surfaces cach with low protuberances, tufts of stiff setac and often few corncous spinules. lateral faces each
with faint longitudinal sulcus and scattered setae, mesial faces each with dorsal and ventral row of small corneous spinules, ventral margins each with row of 13-16 corneous spines. Propodi slightly longer than carpi; dorsal surfaces all with low protuberances and tufts of setae, ventral surfaces each with row of corneous spinules and tufts of setae. Carpi each with row of spines and tufts of setae on dorsal margin (2nd) or low protuberances, tufts of setae and single dorsodistal spine (3rd), rarely 3 rd also with 1 or 2 additional small spines. Meri with tufts of stiff setae on dorsal margins, ventral margins each with tufts of setae and row of spines at least in distal half (2nd) or low protuberances and tufts of setae (3rd). Ischia with tufts of setae on ventral margins.

Sternite of third pereopods with anterior lobe subsemicircular to subsemiovate, anterior margin sometimes with 1 or 2 calcareous spines and with long. stiff setae. Fourth pereopods with small preungual process at base of claw. Telson with terminal margins subcircular to oblique and armed with several calcareous spines, strongest toward outer angles: lateral plates usually with fused denticles.
Colour. In recently (6 weeks) preserved material: Shield mottlcd red-orange. Ocular peduncles white, acicles with faint red-orange hue. Antennular peduncles opaquc with orange at distal margins of ultimate and penultimate segments. Antennal peduncles orange; flagella in proximal half red-orange dorsally and ventrally, white laterally and mesially, with every 4th or 5 th article completely white; distal half uniformly redorange interrupted by white every 4 to 6 articles. Chelae red-orange with tips of dactyls and fixed fingers white or light orange and with red patches on palms dorsally and ventrally at point of articulation with dactyls and ventrally at articulation with carpi, spines red. Carpi uniformly red-orange, darkest at proximal margins. Meri red-orange with band of white at distal margins. Ambulatory legs with uniformly orange dactyls; propodi and carpi light orange or white with longitudinal orange or red-orange stripes; meri orange, but with colour fading unevenly.
Distribution. New Zealand, North Island, Cook Strait, off Otago Pcninsula; 12-30 m.
Affinities: Among the specics of Australeremus, A. kirkii bears a superficial resemblance to A. cookii and has occasionally been mistakenly identified as that species (personal examin-
ation). The presence, in A. kirkii of spines or spinulose tubercles on the chelae, rather than the flattened tubercles characteristic of A. cookii immediatcly distinguishes this species. Two other spccies of Australeremus, A. cristatus and A. eltaninae sp. nov., also have chelae armed with spines or spinulose tubercles; however, in both these species the propodal-carpal articulation is greater $\left(80^{\circ}-85^{\circ}\right)$ and the dorsal surface of the left palm is not convex.
Remarks. In the original description (Filhol, 1883) kirkii was misspelled as "Krikii". Filhol (1885b) subsequently corrected this spelling. Thompson's (1930) assignment of specimens to this species appears tentative, as he remarked "A few small specimens, perhaps referable to this species, are present in the collection".

As previously noted, McLaughlin's (1981a) assignment of Filhol's species to Australeremus was based only on Filhol's (1883, 1885b) descriptions and illustration and a photograph of one of the syntypcs; therefore the assignment was considered questionable until actual specimens could be examined.
No data are available for the specimens of A. kirkii in the Portobello Marinc Laboratory collection; however they apparently were collected from the continental shelf off the Otago Peninsula (P.K. Probert, pers. comm.).

Australeremus stewarti (Filhol)

Figures 8B, D, F; 13A-H
Fupagurus Stewarti Filhol, 1883: 67.-1885b:418, pl. 51 fig. 3.

Eupagurus stewarti. - Thomson, 1898: 180. Aleock, 1905: 176. - Chilton, 1911: 298 (in part, see remarks). - Thompson, 1930: 269.

Pagurus slewarti, - Gordan, 1956: 335.
Pylopagurus stewarti. - Forest and de Saint Laurent, 1967: 145. - Probert et al., 1979: 381. MeLaughlin, 1981a: 3. - Sehembri, 1982: 869. 1988: 93.-Sehembri and MeLay, 1983: 30, figs 12a, b, 14. - Probert and Wilson, 1984: 389. - Taylor et al., 1989: 1062.
? Not "a hermit crab". - Morton and Miller, 1968. fig. 215 (2) by implication of Sehembri and MeLay (1983).

Type material. Holotype not seen.
Other material. New Zealand. Wanganella Bank, Norfolk Ridge, RV Tangaroa stn BS 886 (NZOI stn 0.632) ($32^{\circ} 35.3^{\prime} \mathrm{S}, 167^{\circ} 41.8^{\prime} \mathrm{E}$), 422-437 m, 29 Jan 1981 , NMNZ Cr8144 (1 female, 2.0 mm). USNS Eltanin stn $23 / 1709\left(43^{\circ} 31^{\prime} \mathrm{S}, 176^{\circ} 10^{\prime} \mathrm{W}\right), 143-183 \mathrm{~m}, 24$ May 1966, USNM 244445 (4 males, 1 female, $1.5-3.3 \mathrm{~mm}$). Chatham Island Expedition $\operatorname{stn} 34\left(44^{\circ} 4^{\prime} S\right.$,

Figure 13. Australeremus stewarti (Filhol), male from Eltanin stn 23/1709, USNM 244445. A, shield and cephalic appendages; B , chela and carpus of right cheliped (dorsal view), C, chela and carpus of left cheliped (dorsal view); D, chela of left cheliped (dorsomesial view); E, right 2nd pereopod (lateral view); F, left 3rd pereopod (lateral
 H).
$175^{\circ} 25.5^{\prime} \mathrm{E}$), 238 m .1 Feb 1954, NMNZ Cr3900, 3901, 3902 (1 male, 2 females, $1.3-2.2 \mathrm{~mm}$). NZOI stn B $196\left(46^{\circ} 20.6^{\prime} \mathrm{S}, 170^{\circ} 27.6 \mathrm{E}\right), 135 \mathrm{~m}, 18$ Oct 1959 , NMNZ Cr3905 (1 malc, 3.2 mm). James Cook stn 100573, mid Foveaux Strait, 28 m , NMNZ Cr3903, 3904 (1 male, 1 female, $3.2,3.4 \mathrm{~mm}$). USNS Eltanin $\operatorname{stn} 16 / 1430\left(49^{\circ} 19^{\prime} \mathrm{S} .171^{\circ} 36^{\prime} \mathrm{E}\right) 165-192 \mathrm{~m}, 22 \mathrm{Feb}$ 1965, USNM 244444, 244451 (3 males. 2 females. 1 juvenile, $0.4-2.8 \mathrm{~mm}$). USNS Eltanin stn $51 / 590$ ($52^{\circ} 08.5^{\prime} \mathrm{S}, 169^{\circ} 43.7^{\prime} \mathrm{E}$). 91-92 m, 20 Jan 1972, USNM 244453, NHRM 16676, RMNH D 40432 (27 males, 19 females. 4 ovigerous females, 1.0-2.7 mm).

Redescription. Shield is considerably longer than broad; anterior margin bet ween rostrum and lateral projections concave. Rostrum acutely triangular, terminating in small spinule. Lateral projections obtusely triangular, with small submarginal spine.

Ocular peduncles $2 / 3-3 / 4$ length of shield, moderately stout. Ocular acicles triangular. terminating rather bluntly but with strong submarginal spine; separated basally by ${ }^{2 / 3}$-entire basal width of 1 acicle.

Antennular peduncles overreach ocular peduncles by $1 / 2-2 / 3$ length of ultimate segment.

Antennal peduncles overreach ocular peduncles by $1 / 2-2 / 3$ length of ultimate segment. Fifth and fourth segments with few scattered setae. Third segment with ventrodistal margin unarmed. Second segment with dorsolateral distal angle produced, terminating in acute spine, mesial margin with $0-2$ accessory spinules: dorsomesial distal angle with strong spine. First segment with dorsolateral distal angle sometimes with small spine. Antennal acicle not reaching tip of cornca, terminating in small spine and with tufts of setae on mesial face. Antennal flagellum not overreaching right cheliped, every article, at least proximally, with 2 or 3 long (3-5 article length) sctac.

Right cheliped with subrectangular, often elongate carpus and chela. Dactyl $1 / 3-2 / 3$ length of palm; cutting edgc with 2 or 3 strong calcareous teeth in proximal $2 / 3$, short row of corneous teeth distally; terminating in corneous claw: dorsomesial margin with row of strong, somewhat blunted spines, dorsal surface with scattered weak to prominent tubercles. Palm $2 / 3$-slightly less than half length of carpus; dorsomesial, dorsoproximal and dorsolateral margins all with row of strong, somewhat blunted spines entirely circumscribing palm and fixed finger, dorsal surface level or slightly convex and with numerous small to prominent, sometimes spinulose tubercles, occasionally becoming heavily calcified nodules, largest forming irregular row in
midline but frequently not extending onto fixed finger; cutting edge of fixed finger with large calcareous teeth proximally and smaller teeth distally; terminating in corneous claw, dorsal surface with numerous small to moderately large tubercles and few scattered setae. Carpus $1 / 3-1 / 2$ longer than merus, dorsal width $1 / 2$ or appreciably less (large specimens) than length; dorsomesial margin with row of spines becoming stronger and more acute distally, 1 strong spine near dorsodistal margin, row of low sometimes spinulose tubercles on dorsolateral margin proximally curving mesially onto dorsal surface in distal half, but frequently also delimited distally by short row of tubercles, dorsal surface with few scattered tufts of setae; lateral and ventral surfaces with transverse rows of tubercles or protuberances and few setae. Merus acutely triangular in cross-section; dorsodistal margin with 1 strong acute spine and often second smaller spine; ventrolateral margin with row of spines in distal third, ventromesial margin with row of spines in proximal $2 / 3$. Ischium with row of blunt spines on ventromesial margin.

Left cheliped with propodal-carpal articulation $85^{\circ}-90^{\circ}$ from horizontal planc. Dactyl 2-3 times length of palm, dorsoventrally flattened; cutting edge with row of corneous teeth, terminating in small corneous claw; dorsal surface unarmed or with row of low tubercles near cutting edge, dorsomesial margin with row of low tubercles or spinules at least distally and few tufts of setae. Palm $1 / 3-1 / 6$ length of carpus; dorsolateral margin of palm and fixed finger with row of strong spines, dorsal surface generally flattened, armed with numerous weak to prominent tubercles, stronger and more numerous on fixed finger, dorsomesial margin with few setae and occasionally 1 or 2 small tubercles. Carpus acutely triangular in cross-section; dorsal margin with row of sharp spines visually continuous with marginal spines of palm and fixcd finger; distal margins laterally and mesially with $1-3$ small spines, lateral and mesial faces with scattered setae. Merus as long or slightly longer than carpus; dorsal margin with low protuberances and tufts of setae, dorsodistal margin with strong spine; ventrolateral distal angle sometimes with I acute spine, ventromesial margin with row of spines. Ischium with row of spines on ventral margin.

Ambulatory legs dissimilar. Second pereopods with dactyls $2 / 3-3 / 5$ length of propodi, somewhat laterally flattencd, dorsal margins each usually with row of strong spines, occasionally only protuberances; ventral margins each with $8-10$ corneous spines and scattered tufts
setac. Propodi exceed carpi by $1 / 4-1 / 3$ own length; sometimes with spine at dorsodistal margin, dorsal surfaces usually with low protuberances or small spines and tufts of setae, ventrodistal margins each with I corneous spinule. Carpi ${ }^{2 / 1}-$ y / s length of meri; dorsal margins each with I spine at distal margin, usually I additional spine in proximal half and row of tufts of setac. Meri elongate; dorsal surfaces with low protuberances and tufts of setae, ventrolateral margins with or without I spine distally. Third pereopods differ in having narrower dactyls with unarmed dorsal margins; propodi lack spine at dorsodistal margin or on dorsal surfaces; carpi with only dorsodistal spine; meri lack spine at ventrolateral distal angles. Ischia of both 2nd and 3rd pereopods unarmed, but with tufts of setae.
Sternite of 3rd pereopods with narrowly triangular or rod-like anterior lobe terminating with tuft of setae. Fourth percopods with short dactyl; small preungual process at base of claw. Filth abdominal somite usually with numerous stiff setae dorsally. Uropods symmetrical. Telson with terminal margins of posterior lobes straight, slightly oblique, or slightly rounded. armed with 2 to 4 strong spines and occasionally 1 or 2 small spines, lateral plates often weakly calcified.

Colour. "Eyestalks pale orange; antennules uniform pale yellow: antennae reddish with narrow white bands; chelipeds reddish-pink to orange with some darker markings and a purple band at the distal end of the inner surface ol the meropodites (this band varies in intensity from very distinct to faded); walking legs orange ground colour with white bands towards the tips," (Schembri and McLay, 1983).
Distrihution. Wanganella Bank, North Island, Chatham Islands, southern New Zealand and Tasman Sea to $52^{\circ} \mathrm{S}$ latitude; 28-457 m.

Affinities. Australeremus stewarti appears most closely allied to A. eltaninae sp. nov. Both species have spatulate percopodal dactyls, the second being dorsally armed with spines or spinulose protuberances. Similarly the chelae are armed with tear-drop shaped spines, although these are usually stronger in the latter species. and the pereopodal carpi have only a single spine at the dorsodistal margin and frequently 1 additional spine in the proximal half of the dorsal surface (2nd). In large specimens ($\mathrm{SL}>3.0$ mm) the length-width ratio of the carpus of the right cheliped immediately distinguishes the two species. The carpus in A. stewarti is $21 / 2-3$
times longer than wide, whereas this segment is only $1 / 3-1 / 4$ longer than wide in A. eltaninae. In smaller specimens of A. stewarti this ratio is not as pronounced; however, the carpal length is still at least twice the width. The mesial surface of this segment is rounded or relatively straight in A. stewarti, however, because of the flared dorsomesial margin in A. eltaninac the mesial facc is noticeably concavc. If both species are available for eomparison, the subrectangular shape of the right ehela of A. stewarti immediately sets this species apart from A. cltaninae with its subtriangular ehela.

In general configuration of the chelipeds and frequently in armature of the dactyls of the 2nd pereopods. A. stewarti also bears a superficial resemblance to A. cookii. However, several characters provide easy separation of the two species. The dorsal surfaces of the chelae, particularly the right, are armed with flattened, elosely-spaced tubereles in A. cookii; the carpi ol the 2 nd (at least right) and frequently also the 3rd percopods are provided with a row of spines. In A. stewarti the armature of the dorsal surface of the chelae varies from small spinules to well developed, large tubercles. strongest in the midline on the right chela: the dorsal surfaces of the carpi of the 2nd pereopods are armed only with one spine at the dorsodistal margin and one additional spine in the proximal half. Anstralerchus stewarti is distinct from all other species currently assigned to the genus in having a covering of stilf setae on the dorsal surface of the lifth abdominal somite; however, as these setae may be broken off, it is not considered diagnostic.
Remarks. Filhol (1883) described, but did not illustrate Eupagurus stewarti from a single male specimen collected at Stewart Island off the southern coast of New Zealand. In a subsequent publication, Filhol (1885b) repeated his description, which was then accompanied by an illustration. This later publication was cited by both Thomson (1898) and Chilton (1911) as the date of original description. Filhol's figure (1885b, pl. 51 fig. 3) of A. stewarti is inaccurate in that the left chela is shown in a horizontally plane position in its relationship to the carpus; the abdomen is depicted with paired abdominal pleopods. Thompson's (1899) diagnosis of this species was simply a translation of Filhol's (1883; 1885b) description. Thomson apparently had not seen the species.

The specimens referred to A. stewarti by Thompson (1930) included those reported on earlier by Chilton (1911). Thompson found both
A. stewarti and A. cookii represented, but eould not determine the range of A. stewarti since speeimens from the Nora Niven stns had been combined. Sehembri and McLay (1983) and Schembri (1988) reported A. stewarti off the Otago Peninsula, and our present material extends the eastern range of this species to off Chatham Island. However, the speeimen from Nora Niven stn 79 (Porangahau Bay) (ef. Chilton, 1911) south of Cape Kidnappers, North Island is probably correetly referred to A. cookii.

Sehembri and McLay (1983) referred to Morton and Miller (1968) in citing the habitat of A. stewarti as "bryozoan tubes", thus implying that the authors' eaption "a hermit crab, with a poly-zoan-formed extension to its gastropod shell" for figure 215 (2) referred to A stewarti. Given the broadly rounded dorsolateral margin of the right ehela depieted by Morton and Miller. it is more probable that the speeies illustrated was A. cookii, which is also known to inhabit bryozoan tubes.

Australeremus triserratus (Ortmann)

Figure 14, plate 1
Eupagurus triserratus Ortmann, 1892: 308, pl. 12 fig. 15. - Alcock, 1905: 177 (list). - Balss. 1913:52 (key). - Terao, 1913: 373.
?Eupagurus tricarinatus. - Balss, 1913: 58 (? not Eupagurus tricarinatus Stimpson, 1858) (see remarks).
? Eupagurus trisertatus. - Yokoya. 1933: 84. Kamita, 1958: 67 (see remarks).
Eupagurus triserralus?). - Shiino, 1936: 184 (sec remarks).
Eupagurus (Eupagurus) triserratus. - Melin. 1939: 29. figs 9, 10.
? Pagurus tricarinatus. - Gordan. 1956: 336 (in part) (see remarks). - Miyake, 1982: 197 (list) (see remarks).
?Pagurus triserratus. - Gordan, 1956: 336. Miyake, 1978: 101, fig. 39. - Morgan. 1990: 26 (scc remarks).
Pagunes triserratus. - Kim, 1964: 5, pl. 1 fig. 6. 1970: 8. - 1973: 225, 599 , fig. 50 , pl. 65 fig. 30.
Pylopagurus serpulophilus Miyake, 1978; 120, pl. 4 fig. 4. - 1982: 120, pl. 40 fig. 5. - McLaughlin, 1981a: 3.
Type material. Lectotype (hercin designated): type locality. Sagamibai (Japan), $100 \mathrm{~m}, 1881$, MZUS (malc, 3.6 mm).
Paralectotype: MZUS (male, 3.3 mm).
Other material. Dr S. Bock's Japan Expedition: "Sagami Misaki Okinose", 150-300 m, 1914, NHRM 11537, 11290, USNM 244450 (4 males, 7 females, 4 ovigerous females, $1.1-2.7 \mathrm{~mm}$). "Nordostlich von

Ototojima", $105 \mathrm{~m}, 31$ Jul 1914, ZMUU (3 males. $1.4-1.6 \mathrm{~mm}$). "Ostlich von Chichijima", 100 m , I Aug 1914. NHRM 14899 (3 males, I female, $1.1-2.3 \mathrm{~mm}$). "Ostlich von Chichijima", $105 \mathrm{~m}, 7$ Aug 1914, ZMUU (2 males, 0.8 .1 .1 mm). "2 Meilen ostlich von Higashijima". 135 m .7 Aug 1914, ZMUU (3 males. 3 lemales. 1 ovigerous, $1.2-1.6 \mathrm{~mm}$) [Melin (1939) reported 2 males, 4 females]. "Ost fr channcl", 120 m , 1 Aug 1914. ZMUU (I fcmale, 2.0 mm). SW of KaoHsiulg. Taiwan, South China Sca, 72-91 m, 13 Oct 1972. F.B. Steiner, CAS 046659 (1 female, 1.7 mm).

Redescription. Shield slightly to considerably longer than broad; anterior margin between rostrum and lateral projcetions coneave. Rostrum acutely triangular, terminating in small spinule. Lateral projections broadly rounded, with marginal or submarginal spine. Posterior carapacc usually with tufts of long setac mesially, adjacent to cervieal groove.

Ocular peduneles $2 / 3-4 / 3$ length of shicld, modcrately slender. Ocular aeicles acutcly triangular, terminating subacutely and with strong submarginal spine; separated basally by $3 / 4-$ entire basal width of 1 aciele. Interocular lobes weakly to moderately well developed.
Antennular peduneles overreaeh ocular peduneles by $1 / 4-1 / 2$ length of ultimate segment.
Antennal peduneles overreach ocular peduncles by $1 / 3-1 / 2$ length of ult imate segment. Fifth and fourth segments with few scattered setae. Third segment with ventrodistal margin unarmed. Second segment with dorsolateral distal angle produeed, terminating in acute spine. mesial margin with 0 to several accessory spinules; dorsomesial distal angle with strong spine. First segment with acute spine at dorsolateral distal angle or unarmed. Antennal aciele not reaehing distal margin of eornea, terminating in small spine and with tufts of setae on mesial face. Antennal flagellum not overreaching right cheliped; every artiele proximally with 2 or 3 long (4-6 artiele length) and 1 or 2 short setae, long setae every second article distally.
Right eheliped with dactyl $2 /$-approximately equaling length of palm; cutting edge with 3 or 4 strong calcareous teeth in proximal five-sixths, short row of corneous teeth distally; terminating in eorneous elaw; dorsomesial margin with row of spines, dorsal surface with scattered low or sometimes spinulose tubercles. Palm $2 / 3-1 / 5$ length of earpus; dorsomesial, dorsoproximal and dorsolateral margins all with row of acute spines entircly cireumseribing palm and fixed finger, dorsal surfaee slightly convex and with numerous weak to prominent and oeeasionally spinulose tubereles, midline with single or

occasionally double row of spines decreasing in size on fixed finger and becoming obsolete near tip; cutting edge of fixed finger with large calcareous teeth proximally and smaller teeth distally; terminating in corneous claw, dorsal surface with few spinules or low tubercles and few scattered setae. Carpus $1 / 4-1 / 3$ longer than merus, with mesial face appreciably concave in large specimens ($\mathrm{SL}>2.0 \mathrm{~mm}$); dorsomesial margin with row of spines becoming stronger and more acute distally. $1-3$ spines at or near dorsodistal margin, row of small spines on dorsomesial margin proximally curving mesially onto dorsal surface in distal half, all surfaces with scattered tufts of setae. Merus triangular in cross-section; dorsodistal margin with 1 strong acute spine; ventrolateral margin with row of spines in distal third, ventromesial margin with 3 or 4 blunt to acute spines proximally. Ischium with row of blunt spines on ventromesial margin.

Left cheliped with propodal-carpal articulation $75^{\circ}-80^{\circ}$ from horizontal plane. Dactyl $1 / 1 / 2-2$ times length of palm, dorsoventrally flattened; cutting edge with row of corneous teeth; terminating in small corneous claw; dorsal surface usually with few minute spinules near cutting edge. dorsomesial margin often with row of low tubercles or spinules and few tufts of setae. Palm half length of carpus: dorsolateral margin of palm and fixed finger with row of strong spines, dorsal surfaces generally flattened, armed with 2 irregular rows of tubercles or spinules, dorsomesial margin with few setae and occasionally 1 or 2 small tubercles. Carpus acutely triangular in cross-section; dorsal margin with row of acute spines, distal margin mosially with 1-3 small spines; frequently 1 or 2 blunt spines on ventromesial margin distally, lateral and mesial faces with scattered setac. Merus as long or slightly longer than carpus: dorsal margin with low protuberances and tufts of sctae; ventromesial margin with row of small spincs or spinules, ventrolateral margin usually unarmed in small specimens ($<2.5 \mathrm{~mm}$), with row of well developed spines in larger specimens. Ischium with few spinules or tubercles on ventral margin.

Ambulatory legs generally similar (2nd right missing in lectotype). Dactyls as long or longer
than propodi; dorsal margins each with row of tufts of setae and 3 or 4 corneous spinules in distal half, ventral margins each with 7-11 corneous spines and scattered tufts of setae. Propodi $1 / 2-2$ timcs length of carpi; dorsal and ventral surfaces with low protuberances and tufts of setae, ventrodistal margins unarmed (2nd) or with I eorneous spinule (3rd). Carpi $2 / 3-$ $3 / 5$ length of meri; dorsal margins each with I spine at distal angle, 2nd often also with 1 additional spinc in proximal half. Dorsal and ventral surfaces of meri with low protuberances and tufts of setae. Ischia unarmed, but with tufts of sctae.
Sternite of 3rd pereopods with semisubovate anterior lobe terminating with tuft of setae. Fourth pereopods with moderately short dactyls; small preungual process at base of claw. Dorsal surface of 6th abdominal somite frequently with few long setae; uropods symmetrical. Telson with terminal margins of postcrior lobes straight or slightly oblique, armed with $2-4$ strong spines and occasionally 1 or 2 small spines. lateral plates reduced.
Colour. "(in formalin). Ground colour of body and legs light red-brown. Carapace with one paired dark red-brown spots before and after cervical groove. Antennal flagellum with light and dark red-brown segments alternatively. Chela and wrist dark red-brown; merus light redbrown with three dark coloured cross-bands. Walking legs light red-brown; merus and dactylus each with two dark coloured cross-bands; carpus and propodus each with two dark coloured cross-bands." (Miyake, 1978).
Distribution. Sagami Bay, Sea of Sagami, Tanabe Bay, Amakusa, East China Sea (Miyake); Bonin Islands, South China Sea; 60400 m .

Affinities. The armature of the chelipeds and pcreopodal carpi suggest relationships among A. triserratus, A. stewarti and A. eltaninae: however, the armature of the dactyls of the 2 nd pereopods immcdiately scparates the latter two taxa from A. triserratus.

Remarks. Two apparently similar Japanese species have been reported and in some

Figure 14. Australeremus triserrams (Ortmann), ovigerous female from "Sagami Misaki Okinose", NHRM 11637. A, shield and eephalie appendlages; B. ehela and earpus of right eheliped (dorsal view), C, ehela and earpus of left cheliped (dorsal view); D, ehela of left eheliped (dorsomesial view); E, right 2nd pereopod (lateral view); F left 3rd pereopod (lateral view): G, anterior lobe of sternite of 3rd percopods; H , telson. Seales $=2 \mathrm{~mm}(\mathrm{~A}-\mathrm{F})$ and $1 \mathrm{~mm}(\mathrm{G}, \mathrm{H})$.
instances probably confounded, i.c., Pagurus tricarinatus (Stimpson, 1858) [not P. tricarinatus of Norman, $1869=P$. alatus Fabricius (Ingle, 1985)] and Australeremus triserratus (Ortmann, 1892). Stimpson's (1858) brief description of P. tricurinatus (repeated in 1907) scemingly was based on a single specimen, sex not indicated; the species has never been illustrated. Most of Stimpson's materials were lost in the Chicago fire of 1871 (cf. Rathbun, 1883); however, his description is sufficiently diagnostic in certain respects that it is probable that if found again this taxon could be recognized such as his "Eupagurus acautholepis" recently was (ci. Gunn and McLaughlin, 1989). It does not appear that P '. tricarinatus is conspecific with A. triserratus.
Ortmann's (1892) description of Ěupagurus: triscrratus, based on two mates and one additional damaged lot, was bricl and was accompanied by a single, rather uninformative illustration. He compared this species only to E : tricarinatus and separated the taxa primarily by the absence of a rostrum in the latter. We have now had the opportunity to examine the two male specimens described by Ortmann that remain in the collections of the Musée Zoologique, Strasbourg. Both differ from Stimpson's description ol P. tricarinatus in several signilicant characters. P. tricarinatus is characterized by the absence of a rostrum, the presence of well developed interocular tobes, subequal chelipeds with the right patm bearing marginal and median denticulate keets or crests and ambulatory dactyls that are much fonger than the propodi. Ortmann's syntypes both have a well developed rostrum, no appreciable development of interocular lobes, unequal chelipeds, and pereopodal dactyls that are approximatley equal in length to their respective propodi. We select as the lectotype of Eupagurus Misertatus the larger of the two specimens ($\mathrm{SL}=3.6 \mathrm{~mm}$).

Presumably because of its description from lapanese waters, Balss (1913) included Eupagurus trisertatus in his species key, although it was not among the species he discussed in his report. He did make note of a single male specimen coltected from Sagami Bay that he identified as E. tricarinatus, remarking that this taxon was only a variety of the European E. excaralus Herbst. The key character by which Balss distinguished E. tricarinatus from E. triserratus and other species was the absence of a rostrum in the former species. However, he remarked that his specimen differed from Stimpson`s (1858) description by the presence of a distinct rostral
spine. We suspect that Balss actuatly had a specimen of A. Iriserratus rather than P. tricarinatus.
Terao (1913) listed both Stimpson's (1858) and Ortmann's (I892) species in his catalogue of Japanese hermit crabs, but remarked that he had not examined any material of either taxon.

Yokoya (1933) listed Eupagurus triserratus from several Japanese localities. For two of these he reported having female specimens; however, as he gave no diagnostic information it is uncertain as to whether he simply faited to notice paired gonopods in these females or in fact misidentified his taxon. He made no mention of P. tricarillaths.

The bopyrid isopod Pseudione intermedia Nierstrasz and Brender à Brand is was originally described from an unspecified locality in Japan with no host mentioned (Nierstrasz and Brender à Brandis, 1932). Subscquently Shiino (1936) redescribed it on the basis of material from Yahagi, Masaki, Japan as a parasite of "Eupagurus triserratus(?)". One specimen of A. triserralus from NHRM 11290 was found infected by a parasite ol this species (Dr J.C. Markham, personal communication), thus lending support to Shiino's identification of the host hermit crab.
Two lots of "Eupagurus (Eupagurus) triserratus" From Dr Sixten Bock's Japan Expedition identified by G. Melin are present in the collections of the Naturhistoriska Riksmuscet, Stockholm and four in the collections of the Zoologiska Muscet. Uppsala Universitet. Of these, four from the Bonin Islands (NHRM 14899, ZMUU) are cited by Melin (1939) in his redescription of Ortmann's (1892) species. Of the other two, one is also from one of Melin's Bonin Islands localities, the other from Sagami Bay (vicinity of $34^{\circ} 57^{\prime} \mathrm{N} \quad 139^{\circ} 35^{\prime} \mathrm{E}$). Although Mclin's (1939) redescription is quite detailed, he failed to notice paired first pleopods in his female specimens and consequently retained the species in the nominal subgenus Eupagurus. Both of Ortmann's (1892) syntypes are larger than any of Mclin's (1939) specimens and demonstrate some variations not seen in the smaller specimens. For example, the merus of the teft cheliped is armed on both ventral margins in Ortmann's material, the dorsal surface of the right chela of the targer specimen has an almost double row of strong spines. In contrast, only the ventromesial margin of the merus of the left cheliped carries a row of spines in all of Melin's specimens and the dorsal surface of the right chela has a single median row of large spines. Nonctheless. it is clear that Melin's interpret-
ation of Ortmann's species was correct. The presence of females with paired first pleopods in the Bock Expedition material validates the assignment of this taxon to Australeremus.

Kamita (1958) cited E. triserratus in his discussion of geographical distributions of pagurids in Korea, but gave no information to indicate that he had actually examined this species, P. tricarinatus was not reported.

Gordan (1956) listed several citations under P. tricarinatus, only three of which appear to actually refer to Stimpson's (1858) taxon (i.e., Alcock, 1905; Balss, 1913, and Terao, 1913). As previously indicated, we suspect that Balss' (1913) report may actually refer to A. triserratus. Gordan's (1956) citations of A. triserratus, like those of Alcock (1905) were from literature surveys.

Kim (1964) reported Pagurus triserratus from Sogwipo, Cheju Do, Korea, based on two male specimens he had collected the previous year. Although he did not describe his material, his figure (pl. I fig. 6) strongly suggests that he did in fact have Ortmann's (1892) species. His subsequent reports (Kim, 1970, 1973) were based on these same two specimens.

In his report on the anomuran fauna of Sagami Bay, Miyake (1978: 101, fig. 39) figured and briefly deseribed Pagurus triserratus. No mention is made by Miyake of torsion of the left chela and none is apparent in his illustration. Miyake's material ineluded two males and one female from Japanese waters and one male from the East China Sea; however, gonopods in the female were not denoted. These two characters, if accurately reported would distinguish this taxon from A. triserratus. The Kyushu University crustacean collections were recently moved to Kitakyushu Museum of Natural History and have not yet been eataloged (Dr K. Baba, Dr K. Ueda, pers. comms), therefore we were unsuccessful in our attempt to examine the lot containing both male and female specimens (ZIKU 5604) to verify Miyake's description. In his index of species, Miyake (1978: 184) questionably equated P. triserratus to P. tricarinatus. Subsequently, he (Miyake, 1982) cited the taxon as P. tricarinatus $(?=P$. triserratus $)$. However, his (Miyake, 1978) description of P. triserratus differs in several significant respects from Stimpson's (1858) deseription of P. tricarinatus. Miyake described his speeimens as having a distinct rostrum; no mention is made of well developed inter-ocular lobes, nor are any illustrated. The ehelipeds are unequal; the right palm reportedly is provided with dorsomesial and
dorsolateral marginal teeth and a median longitudinal row of tubercular teeth. The dactyls of the ambulatory legs are as long as the propodi. In all of these characters, Miyake's taxon agrees with Ortmann's species. Until the absence of female gonopods and the lack torsion of the left chela can be confirmed, we questionably assign Miyake's taxon to A. triserratus.

In his 1978 publication, Miyake also described Pylopagurus serpulophilus as a new species from Sagami Bay. The major difference between P. serpulophilus and A. triserratus would appear to be in the armature of the right cheliped. In his description of the right chela, Miyake made no mention of spines on the dorsoproximal margin, nor are any spines apparent in his illustration. However the photograph of P. serpulophilis in his subsequent report (Miyake, 1982, pl. 40 fig. 5) does show a row of dorsoproximal spines. We have found only two additional, and minor, differences between our specimens of A. triserratus and Miyake's (1978) description and illustration of P. serpulophilus. Miyake described the ocular peduncles of his species as short, however, his illustration (pl. 4 fig. 4) shows moderately long ocular peduncles. The smallest of our specimens do have relatively short ocular peduncles, but with increased specimen size, the ocular peduncles of A. triserratus arc moderately long and slender. Similarly Miyake described the carpi of the pereopods as having only a single spine at the dorsodistal margin. Our one East China Sea specimen and most spccimens of A. triserratus from Sagami Bay and the Bonin Islands have a second spine or spinule on the dorsal margin of the carpus of each 2nd pereopod; however, this spine is frequently very small and could easily be overlooked. On the basis of present evidence, we believe that Pylopagurus serpulophilus is conspecific with A. triserratus; the latter name has priority.
In his comparison of Pagurus triserratus with his new species P. boriaustraliensis, Morgan (1990) stated that the dactyls of the ambulatory legs of the former species were as long or longer than the propodi; the antennal flagella were extremely short. The pereopodal dactyls are approximately equal to the propodi in length in all specimens of A. triserratus that we have examined; however the antennal flagella, while not overreaching the right cheliped, cannot be considered cxtremely short. Since A. triserratus has not been reported from north-western Australia, we assume that Morgan's comparison was based only on Ortmann's (1892) deseription and figure.

Australeremus eltaninae sp. nov.

Figure 15

Type material, Holotype: New Zealand, USNS Eltanin $\sin 231 / 1716\left(39^{\circ} 35^{\prime} S, 178^{\circ} 46^{\prime} \mathrm{E}\right), 128-146 \mathrm{~m}, 28$ May 1966, USNM 244463 (male (3.6 mm).

Paratypes. RV Tangaroa stn BS $840(\mathrm{NZOI} \operatorname{stn} \mathrm{O}$. 581), Ranfurley Bank ($37^{\circ} 34.6^{\prime} \mathrm{S} 178^{\circ} 52.8^{\prime} \mathrm{E}$), 35-39 m, 22 Jan 1981, NMNZ (r8132 (1 malc, 3.2 mm). RV Tangaroa stn BS 837 (NZOI stn O. 582), Ranfurley Bank ($37^{\circ} 35.0^{\prime} \mathrm{S} 178^{\circ} 52.8^{\prime} \mathrm{E}$), 31-47 m, 22 Jan 1981, NMNZ Cr8131 (3 malcs, 1.8-3.4 mm). RV Tangaroa stn BS 838 (NZOI stn O. 583). Ranfurley Bank ($37^{\circ} 35.4^{\prime} \mathrm{S} 178^{\circ} 52.9^{\prime} \mathrm{E}$), 34-54 m, 22 Jan 1981, NMNZ Cr8130(2 lemales. 1.9, 2.0 mm). RV Tangaroastns BS 834, 838 (NZOI stn O. 579), Ranlurlcy Bank ($37^{\circ} 36.7^{\circ} \mathrm{S} 178^{\circ} 51.6^{\prime} \mathrm{E}$), $56-63 \mathrm{~m}, 22 \mathrm{Jan}$ 1981, NMNZ Cr8060, 8133 (1 male, 1 female, $1.8,2.8 \mathrm{~mm}$). RV Tangaroa stn BS 840 (NZOI stn O. 585), Ranfurley Bank ($37^{\circ} 38.4^{\prime} \mathrm{S} 178^{\circ} 51.7^{\circ} \mathrm{E}$), 79-83 m, 22 Jan 1981, NMNZ Cr8148, 8150 (3 males, 1 female, $1.9-2.5 \mathrm{~mm}$).

Description. Shield as long or longer than broad; anterior margin between rostrum and lateral projections concave; anterolateral margins sloping; posterior margin truncate; dorsal surface with few seattered setae. Rostrum triangular, with small terminal spinule. Lateral projections broadly rounded, with small submarginal spine.

Ocular peduncles $7 / 4-1 / 4$ shicld length, corneae slightly dilated; dorsomesial surface with row of short setac. Ocular acicles acutely triangular. with strong submarginal spine; separated basally by slightly less to slightly more than basal width of 1 acicle.

Antennular peduncles exceeding ncular peduncles by $1 / 4-1 / 2$ length of ultimate segment. Ultimate segment with several setae at dorsolateral distal angle. Pentultimate segment with few seatlered setae. Basal segment with small spine on lateral face dorsally.

Antennal peduncles overreach ocular peduncles by $1 / 4-1 / 3$ length of ultimate segment. Fifth and fourth segments with scattered setae. Third segment with small spinule at ventrodistal margin. Second segment with dorsolateral distal angle produced, terminating in acute spine, mesial and lateral margins usually with 1-4 accessory spinules, and tufts of setac; dorsome-
sial distal angle with acute spine. First segment with small spine at laterodistal margin; ventral margin produced and with I small spine laterally. Antennal acicle reaching beyond base of cornea, strongly arcuate, terminating in strong spine; mesial face with row of tufts of short to moderately long setac. Antennal flagellum with 2-4 long and 1 or 2 short setae every article proximally and every second to fourth article distally.

Right cheliped (missing in holotype) with subtriangular chela (dorsal view); dactyl shorter than palm; slightly overlapped by fixed finger, terminating in small corncous claw; cutting edge with row of large calcarcous teeth; cutting edge ol fixed finger also with row of calcareous teeth. Dorsomesial margin of dactyl with row of strong spines. dorsal surface with 2 rows of prominent. blunt tubereles, mesial and vent ral surlaces with scattered setac. Palm 1/2-2/3 length of carpus; dorsomesial. dorsoproximal and dorsolateral margins with strong acute spines circumscribing palm and extending complete length of lixed finger as broad. blunt spines, dorsal surface with row of strong, tear-drop shaped spines adjacent to dorsomesial margin, separated from similar, but stronger median row by slight Iongitudinal depression, remaining surface of palm and fixed finger with tear-drop shaped, acute or blunt tuberculate spines, frequently interspersed with mushroom-shaped tubercles; mesial, ventral and lateral surfaces unarmed but with scattered setae. Carpus equaling or slightly exceeding length of merus, dorsoventrally considerably deeper than palm; dorsal width $<\frac{3}{4}$ Iength; dorsomesial margin flared and armed with row of strong acute spines, dorsal surface with only longitudinal row of small spines or spinulose tubercles laterad of midline and rarely 1 small spine at dorsodistal margin; lateral face with row of transverse ridges and tufts of setae dorsally. ventrolateral margin occasionally crenulate: mesial face noticably concave, unarmed; ventral surface with scattered setac. Merus triangular. dorsal margin with few tufts of setae and strong spine at distal margin; ventromesial margin with 4 or 5 acute or blunt spines. ventrolateral margin with sloort row of acute spines in distal half; ven-

Figure 15. Ahstraleremus chtaninaesp. nov. A, C, E-G holotype, Irom E/fanin stn 23/1716, USNM 244463: B. D, male paratype, lrom Ranfurley Bank, New Zealand, NMNZ 8132. A, shield and cephalic appendages; B, chela and carpus of right cheliped (dorsal view), C, ehela and carpus of Iclt cheliped (dorsal view); D, right 2nd percopod (lateral view); E, lelt 3rd pereopod (lateral view); F, anterior lobe of sternite of 3rd percopods: G, telson. Scales $=3 \mathrm{~mm}(A-E)$ and $1 \mathrm{~mm}(F, G)$.

tral surface oceasionally with 1 or 2 spines distally and with scattered tufts of setae. Ischium with row of small spines on ventromesial margin.
Left eheliped with propodal-earpal articulation $60^{\circ}-80^{\circ}$ from horizontal plane. Dactyl $21 / 2-31 / 2$ times longer than palm, somewhat flattened; tcrminating in strong corneous claw and slightly overlapped by fixed finger; eutting cdgc with row of corneous teeth; dorsomesial margin with protuberances or small blunt spines, spinules or tubercles proximally, becoming spinelike distally, dorsal surfaec with few protuberances and short setae. Palm $1 / 5-1 / 4$ Iength of carpus; dorsolatcral margin with row of strong spines, dorsal surfaee covered with moderatc to strong, often tear-drop-shaped spines, sometimes interspersed with mushroom-shaped tubercles, spines smallest and more tuberculate in mesial half, dorsomesial margin with 2 low protuberances and few tufts of sctae; lateral and ventral surfaces with low protuberances and scattered tufts of setac. Carpus approximately equaling merus in length; strongly triangular in eross-section; dorsal surface with row of strong acute spincs; mesial face with few transverse ridges and tufts of setae, mesiodistal margin with 3 small spines in distal half, ventromesial margin with low protubcranees and few long sctae; lateral face often with scattered spinules or protuberances and tufts of setac, distal margin with few spinules in dorsal half. Merus with few long sctae on dorsal surface; ventral surface appreeiably deeper in proximal half, ventrolateral margin with row of acutc spincs in distal third, ventromesial margin with row of spines, sometimes only in proximal half. Ischium with row of small spines on ventromcsial margin.

Ambulatory legs generally similar (2nd right missing in holotype). Dactyls slightly shorter or approximately as long as propodi; somewhat bladc-shaped, terminating in strong corneous claws; dorsal margins with low protuberanees occasionally developed into spinose proeesses, row of long corneous spines and tufts of long, stiff setae; lateral and mesial faces with tufts of setae, ventral margins eaeh with row of $7-11$ eorneous spines. Propodi $1 / 4-1 / 2$ longer than earpi; with low protuberances and tufts of long setae on dorsal surfaces, ventral surfaees each with tufts of long setac and 2-4 eorneous spines in distal half. Carpi of 2 nd pereopods with low protuberances and tufts of setae on dorsal surface, frequently also I spine or spiniform proeess in proximal half and 1 or 2 spines at distal margin; dorsal surface of earpi of 3rd occasionally also
with spine in proximal half but only single spine at dorsodistal margin. Meri with tufts of setae on dorsal and ventral surfaces. Isehia with tufts of setae dorsally and ventrally.
Sternite of 3rd pereopods with anterior lobe small, semiovatc to subsemicircular, and with very long setae on anterior margin. Fourth percopod with small preungual process at base of claw. Uropods generally symmetrieal. Telson with terminal margins rounded, few spines mcdianly, plate-like laterally and extending onto latcral margins.
Colour. Unknown.
Distribution. New Zealand, known only from the type locality and the Ranfurly Bank: 31-146 m.

Etymology. This speeies is named for the research vcssel USNS Eltanin.
Affinities. Australeremus eltaninae is most closely related to A. stewarti and A. triserratus. The stronger and more prominent spines of the chelae and the blade-shaped pereopodal dactyls immediately distinguish A. eltaninae from A. triserratus. As previously discussed, A. eltaninae is best distinguished from A. stewarti by the shape of the chela of the right eheliped and Ingth/width ratio of the carpus of this appendage. However, the row of spines on the ventrolateral margin of the merus of the left cheliped also quiekly distinguishes A. eltaninae from the latter species where only a single spine is oceasionally present. The two speeies differ also in the configuration of the ventral surfaces of the earpus and merus. The entire earpus and the proximal portion of the merus of the right eheliped are appreciably deeper in A. eltaninae.
Remarks. Despitc the absence of the right eheliped and second right pereopod, the distinctness of this species was recognized when the parasitized male holotype was initially observed. Subsequently we were able to examine a series of specimens. including females, collected from Ranfurly Bank whieh enabled us to eonfirmed the placement of this speeies in Australeremus and present a complete deseription.

Acknowledgements

The authors wish particularly to aeknowledge the prior work on New Zealand hermit erabs by Jacques Forest and Miehèle de Saint Laurent, and the information and comparative materials
they graciously provided for this study. We are indebted to Drs Gordon Hendler, Jon Norenburg and Rafael Lemaitre, former or present benthic supervisors at the Smithsonian Oceanographic Sorting Center, for making the US Antarctic collections available. We also acknowledge with thanks the assistance provided by J. Haig, Allan Hancock Foundation. University of Southern California; P.B. Berents, Australian Museum; R. Ingle and P. Clarke, The Natural History Museum; R. Van Syoc, California Academy of Sciences; I. Mannering, Canterbury Museum; K. Ueda, Kitakyushu Museum of Natural History; K. Baba, Kumamoto University; E. Lang, Musée Zoologique, Strasbourg; J. Forest, Muséum National d'Histoire Naturelle, Paris; L.B. Holthuis and C.H. Fransen, Nationaal Natuurhistorisch Museum. Leiden: R.B. Manning, National Museum of Natural History, Smithsonian Institution; W.R. Webber, J.C. Yaldwyn and G.R.F. Hicks, National Museum of New Zealand; G.C.B. Poore, Museum of Victoria; L. Sandberg, Naturhistoriska Rijsmuseet, Stockholm; C. Duffy, New Zealand Department of Conservation; P.K. Probert, Portobcllo Marine Laboratory: R.L.C. Pilgrim and C. McLay, University of Canterbury; and L. Wallin, Zoologiske Museet, Uppsala Universitet for providing information and/or in making material available for our examination. Information on and the identification of the bopyrid isopod was provided by J.C. Markham. The photographs of A. triserratus are the work of E.J. McGeorge. The overall quality of the manuscript has been improved by the careful editing of R. Lemaitre, W.R. Webber and an anonymous reviewer. The initial phase of this study was supported by National Science Foundation grant DEB 76-02552; its completion has been made possible by a Cooperative Systematics Research Program Grant from the Smithsonian Institution and Division of Polar Programs, National Science Foundation. This is a scientfic contribution from the Shannon Point Marine Center, Western Washington University.

References

Alcock, A.. 1905. Catalogue of the Indian decapod Crustacea in the collections of the Indian Museum. Part 2. Anomura. Fasc. I. Pagurides. pp. 197. Indian Museum: Calcutta.
Anonymous, 1985. International code of zoological nomenclature adopted by the $X X$ General Assembly of the International Union of Biological

Sciences: 1-338. International Trust for Zoological Nomenclature: London.
Balss, H., 1913. Ostasiatische Decapoden I. Die Galatheiden und Paguriden. In: Beiträge zur Naturgeschichte Ostasiens. Abhandlungen der mathe-matisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaftern, II. Supplemem 9: 1-85.
Batham, E.J., 1969. Benthic ecology of Glory Cove, Stewart Island. Transactions of the Royal Society of New Zealand, Biological Sciences 11 (5): 7381.

Bcll, T., 1844-1853. A history of the British stalk-eyed Crustacea. John van Voorst: London. 386 pp . (Issued in parts: pp. 1-48, 1844; pp. 49-96, 1844; pp. 97-144. 1845; pp. 145-192, 1846; pp. 193240.1847;pp. 241-288, 1848;pp. 289-336, 1851: pp. 337-386, 1852; pp. ix-1xii, 1xii-1xv, 1853.)
Borradaile. L.A., 1916. Crustacea. Part I. Decapoda. British Antarctic ("Terra Nova") Expedition, 1910. Natural Ifistory Report. Zoology 3 (2): 75110.

Chilton, C., 1911. Scientific results of the New Zealand Government trawling expedition, 1907. Crustacea. Records ol the Canterbury Museun 1: 285-312.
Dakin. W.J.. Bennett, 1. and Pope. E., 1948. A study of certain aspects of the ecology of the intertidal zone of the New South Wales coast. Australian Journal of Scientific Rescarch (B) 1: 176-230.
Dakin. W.J., Bcnnett. 1. and Pope. E., 1953. Australian seashores. A guide for the beachlover, the naturalist, the store fisherman, and the student. pp. 372. Angus and Robertson: Sydney.
Dakin. W.J., Bennett, I. and Pope, E., 1960. Australian seashores. A guide for the beachlover, the naturalist, the shore fisherman, and the student. (Rcvised edition) pp. 372. Angus and Robertson: Sydncy.
Dana, J.D.. 1853. Crustacea. United States Exploring Expedition during the Years 1838, 1839. 1840. 1841, 1842. Under the command of Charles Wilkes, U.S.N. 13 (1): vii +685 pp . C. Sherman: Philadclphia. [Reprinted 1972 Antiquariaat Junk: Lochem].
Filhol, H., 1883. Note sur quelques espèces nouvelles d'Eupagurus recueillis en Nouvclle-Zélandc. Bulletin de la Société Plilomatique de Paris (7) 8 (2): 66-68.
Filhol, H., 1885a. Considerations relatives à la fauna des crustacés de la Nouvelle-Zélande. Bibliothèque de l'École des Hautes Éndes, Section des Sciences Naturelles 30 (2): 1-60.
Filhol, H., 1885b. Recueil de Mémoires, Rapports et Documents relatifs à l'Observation du Passage de Vénus sur le Soleil du 9 Décembre 1874. Mission de l'lle Campbell. Zoologie, 3 (2) 1:349-510. Institut de France, Académie des Sciences: Paris.
Forest, J., 1961. Note sur Pagurus thompsoni (Filhol) = P. lacertosus Henderson). In: R.B. Pike, A new bopyrid parasite collected by the Chatham Islands 1954 Expedition. New Zealand Department of

Scientific and Industrial Research, Bulletin 139 (Biological results of the Chatham Islands 1954 Expedition, part 5): 223.
Forest, J. and Saint Laurent, M. de, 1968. Campagne de la "Calypso" au large des côtes Atlantiques de l'Amérique du Sud (1961-1962). 6. Crustacés Décapodes: Pagurides. Annales de l'Institut Océanographique de Monaco n. s. 45 (2): 47172.

Gordan, J., 1956. A bibliography of pagurid crabs, exclusive of Alcock, 1905. Bulletin of the American Museum of Natural History 108: 253-352.
Grant, F., 1902. In: O.A. Sayce, 1902. Dredging on Port Phillip. The Victorian Naturalist 18: $154-$ 155.

Grant, F.E. and McCulloch, A.R., 1906. On a collection of Crustacea from the Port Curtis District, Queensland. Procecdings of the Linnean Society of New South Wales 1906: 1-53.
Griffin, D.J.G., 1967. Hermit crabs. Australian Natural Ilistory 15 (10): 305-309.
Gunn, S.W. and MeLaughlin, P.A., 1989. The rediscovery of Payurus acantholepis (Stimpson) (Decapoda: Anomura: Paguridae). Memoirs of the Museum of Victoria 49 (1): 67-71.
Hale, H.M., 1927. The Crustaceans of South Australia. Part I. pp. 210. Government Printer: Adelaide.
Hale, H.M., 1941. Decapod Crustacea. Reports of the British, Australian and New Zealand Research Expedition 1929-1931 Series B (Zoology and Botany) 4 (9): 257-286.
Healy, A. and Yaldwyn, J., 1970. Australian Crustacean.s in Colour. pp. 112, Reed: Sydney.
Hemming, F. (Ed.), 1957. Opinion 472. Addition to the official list of gencrie names in zoology of the generic namc Pagurus Fabricius, 1775, with Cancer bernhardus Linnaeus, 1758. as type species (Class Crustacca, Order Decapoda). Opinions and Declarations of the International Commission for Zoological Nomenclature 16: 213-276.
Hemming. F., 1958. Official index of rejected and invalid generic names in zoology 1. pp. xii, 132. International Trust for Zoological Nomenclaturc: London.
Henderson, J.R. 1888. The voyage of H.M.S. Chatlenger. Report on the Anomura colleeted by H.M.S. Challenger during the ycars 1873-76. Reports on the Scientific results of the Voyage of H.M.S. Challenger during the years 1873-76. Zoology 27: 1-221.
Hoggarth, D.D., 1990. The cffects of parasitism by the rhizocephalan, Briarosaccus callosus Boschma on the lithodid crab, Paralomis gramulosa (Jacquinot) in the Falkland Islands. Crustaceana 59: 156-170.
Hutton, F.W., 1882. The stalk-eyed Crustacea of New Zealand. New Zealand Journal of Science 1: 263264.

Ingle, R., 1985. Northeastern Atlantic and Mediterranean hermit crabs (Crustacea: Anomura: Paguroidea: Paguridae). I. The genus Pagurus Fabricius, 1775. Journal of Natural History, 19: 745-769.

Kamita, T. 1958. Studies on the decapod crustaceans of Corea, Part II. Hermit-crabs (5). Scientific Reports (Natural Science) of the Shimane University 8: 59-75. (In Japanese).
Kim, H.S., 1964. A study on the geographical distribution of anomuran decapods of Korea with considerations of the oceanographic conditions. Sung Kyun Kwan University Journal 8 (Supplement): 1-15. (In Korean).
Kim. H.S., 1970. A checklist of the Anomura and Brachyura (Crustacea, Decapoda) of Korea. Seoul National University Journal Biology' and Agriculture Series (B) 21: 1-34.
Kim, H.S., 1973. Illustrated Encyclopedia of Fauna and Flora of Korea, 14. Anomura-Brachyura. pp. 694. Samhwa Publishing Co.: Seoul. (In Korean).
Leviton, A.E., Gibbs, R.H. Jr., Heal E., and Dawson, C.E., 1985. Standards in herpetology and lchthyology: Part I. Standard symbolic codes for Institutional Resouree collections in herpetology and ichthyology. Copeia 1985: 802-832.
Liszka, D. and Underwood. A.J., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. Journal of Experimental Marine Biology' and Ecology 137: 47-62.
Manning. R.B. and Holthuis. L.B., 1981. West African brachyuran erabs (Crustacea: Decapoda). Smithsonian Contributions to Zoology 306: 1-379.
McCulloch, A.R., 1913. Studies in Australian Crustacca. No. 3. Records of the Australian Museum 9: 32I-353.
MeLaughlin, P.A.. 1974. The hermit erabs (Crustacea Decapoda. Paguridea) of northwcstern North Amcrica. Zoologische Verhandelingen 130: 1396.

McLaughlin. P.A.. 1981a. Revision of Pylopagurus and Tomopagurus (Crustacea: Decapoda: Paguridae), with the deseriptions of new genera and species: Part I. Ten new genera of the Paguridae and a redescription of Tomopagurus A. Milne Edwards and Bouvier. Bulletin of Marine Science 31: 1-30.
McLaughlin. P.A.. 1981 b . Revision of Pylopagurues and Tomopagurus (Crustacea: Decapoda: Paguridae). with the descriptions of new genera and species: Part 11. Rhodochirus: McLaughlin and Phimochirus McLaughlin. Bulletin of Marine Science 31: 329-365.
MeLaughlin, P.A., 1982. Revision of Pylopagurus and Tomopagurus (Crustacea: Decapoda: Paguridae), with the descriptions of new genera and species: Part III. Agaricochirus McLaughlin, Enallopagurus McLaughlin, and Enallopaguropsis McLaughlin. Bulletin of Marine Science 32: 823-855.
McLaughlin, P.A. and Haig, J., I984. A review of Paghrixus (Decapoda, Anomura, Paguridae) and descriptions of new species. Crustaceana 47 (2): 121-148.
McLaughlin. P.A. and Haig, J., 1989. On the status of Pylopaguropsis zebra (Henderson), P. magnimanus (Henderson). and Galapagurus teevamus Boone, with descriptions of seven new species ol

Pylopaguropsis (Crustacea: Anomura: Paguridae). Micronesica 22 (2): 123-171.
Melin. G., 1939. Paguriden und Galatheiden von Prof. Dr. Sixten Bocks Expedition nach den BoninInseln. 1914. Kongliga Svenska Vetenskapsakademiens Hanglingar (3) 18 (2): 1-119.
Miers, E.J., 1876. Catalogue of the stalk-and sessileeyed Crustacea of New Zealand. pp. 136. Colonial Museum and Geological Survey Department: London.
Miers. E.J., 1884. Crustacea. Report on the zoological collections made in the Indo-Pacific Ocean during the vovage of H.M.S. "Alert" 1881-2: 178-322, 513-575.
Milne Edwards, A., 1880. Reports on the results of dredging under the supervision of Alexander Agassiz in the Gulf of Mexico, and in the Caribbean Sea. 1877, '78, '79 by the U.S. Coast Survey Stcamer "Blake", Lieut.-Commander C.D. Sigsbee, U.S.N., and Commander J.R. Bartlctt. U.S.N. commanding. VIII. Études préliminaires sur les Crustaces. Bulletin of the Muserm of Comparative Zoology 8: 1-68.
Milne Edwards. A. and Bouvier, E.L., 1891. Observations générales sur les paguriens recueillis dans la mer des Antilles et le Golfe du Mexique, par le Blake et le Hassler, sous la direction de M. Alexandre Agassiz. Bulletin de la Société Philomatique de Paris (8) 3: 102-1 10.
Milne Edwards, A. and Bouvier, E.L.. 1893. Reports on the results of dredging, under the supervision of Alcxander Agassiz, in the Gulf of Mexico (1877-78), in the Caribbean Sea (1878-79), and along the Atlantic coast of the United States (188), by the U.S. Coast Survey steamer "Blake", Lieut.Commander S.D. Sigsbec, U.S.N., and Commander J.R. Bartlett. U.S.N. commanding. XXXIII. Description des Crustacés de la famille des paguriens recueillis pendant l'expédition. Memoirs of the Musenm of Comparative Zoology 14: 1-172.
Milne Edwards. H., 1836. Observations zoologiques sur les Pagures et description d'un nouveau genre de la tribu des Paguriens. Annales des Sciences Naturelle, Zoologie (2) 6: 257-288.
Milne Edwards, H.. 1837. Histoire naturelle des Crustaces, comprenant l'anatomic, la physiologie et la classification de ces animaux. 2: 1-532; atlas. pp. 1-32, pls. I-42. Paris.
Milne Edwards. H., 1848. Note sur quelques nouvelles cspèces du genre Pagure. Annales des Sciences Naturelles, Zoologie (3) 10: 59-64.
Miyake, S., 1978. The Crustaccan Anomura of Sagami Bay. pp. 200 (English), pp. 161 (Japanese). Hoikusha Publishing Co.: Tokyo.
Miyake, S., 1982. Japanese Crustacean Decapods and Stomatopods in Color. J. Macrura. Anomura and Stomatopoda. pp. 261. Hoikusha Publishing Co.: Osaka.
Morgan, G.J., 1990. A collection of Thalassinidea, Anomura and Brachyura (Crustacea: Decapoda) from the Kimberley region of northwestern Australia. Zoologische Verhandelingen 265: 1-90.

Morton, J. and Miller, M., 1968. The New Zealand Sea Shore. pp. 638. Collins: London and Auckland.
Nicolet. H. 1849. Crustaceos. In: C. Gay, Historia fisica y politica de Chile vol. 3 (Zoologia): pp. 1-547. Paris.
Nicolet. H. 1854. Crustaceos. 1n: G. Gay, Historia fisica y politica de Chile Atlas vol. 2: 134 pls. Paris and Santiago.
Nierstrasz, H.F. and Brender å Brandis, G.A., 1932. Alte und neue Epicaridea. Zoologischer Anzeiger 101: 90-100.
Ortmann, A., 1892. Die Decapoden-Krebse des Strassburger Museum. 1V. Die Abthcilungen Galatheidea und Paguridea. Zoologisher Jahrbucher Systematik 6: 241-326.
Pike, R.B., 1961. A new bopyrid parasite collected by the Chatham 1slands 1954 expedition. In: New Zealand Department of Scientific and Industrial Research, Bulletin 139 (Biological results of the Chatham Islands 1954 Expcdition, part 5): 221223.

Pope, E.C., 1947. The endless house-hunt. Australian Museum Magazine 9 (4): 129-132.
Probert. P.K., Batham E.J. and Wilson, J.B., 1979. Epibenthic macrofauna off southeastern New Zcaland and midshelf bryozoan dominance. New Zealand Journal of Marine and Freshwater Research 13 (3): 379-392.
Probert, P.K. and Wilson, J.B.. 1984. Continental shelf benthos of Otago Peninsula, New Zealand. Estuarine, Coastal and Shelf Science 19: 373391.

Rainer, S.F., 1981. Soft-bottom benthic communities in Otago Harbour and Blueskin Bay, New Zealand. New Zealand Oceanographic Institute Memoir 80: 1-28.
Rathbun, R., 1883. Descriptive catalogue of the collection illustrating the scientific investigations of the sea and fresh waters. Great International Fisheries Exhibition, London, 1883. Bulletin of the United States National Museum 27: 513621.

Sayce, D.A., 1902. Dredging on Port Phillip. Victorian Naturalist 18: 149-155.
Schembri, P.J., 1982. Feeding behaviour of fifteen species of hermit crabs (Crustacea: Decapoda: Anomura) from the Otago region, southeastern New Zcaland. Journal of Natural History, 16: 859-878.
Schembri, P.K., 1988. Bathymetric distribution of hermit crabs (Crustacea: Decapoda: Anomura) from the Otago region, southeastern New Zealand. Joumal of the Royal Society of New Zealand 18 (1): 91-102.
Schembri, P.J. and McLay, C.L., 1983. An annotated key to the hermit crabs (Crustacea: Decapoda: Anomura) of the Otago region (southeastern New Zealand). New Zealand Journal of Marine and Freslwater Research 17: 27-35.
Shiino, S.M., 1936. Bopyrids from Misaki. Records of Oceanograplic Works in Japan 8: 177-190.
Stimpson, W., 1858. Crustacea. Prodromus descriptionis animalium evertebratorum, quac in expe-
ditione ad oceanum Pacificum septentrionalem, a Republica Rederata missa, Cadwaldaro Ringgold et Johanne Rodgers ducibus, observavit et descripsit. VII. - [Preprint (December 1858) from] Proceedings of the Academy of Natural Sciences of Philadelphia 1858: 225-252.
Stimpson, W., 1907. Report on the Crustacea (Brachyura and Anomura) collcetcd by the Pacific Exploring Expedition, 1853-1856. Smithsonian Miscellaneous Collections 49 (1717): 1-240.
Taylor, P.D., Schembri P.J., and Cook, P.L., 1989. Symbiotic associations between hermit crabs and bryozoans from the Otago region, southeastern New Zealand. Journal of Natural Ilistory, 23: 1059-1085.
Terao, A., 1913. A catalogue of hermit-crabs found in Japan (Paguridae excluding Lithodidae), with descriptions of four new species. Annotationes Zoologicae Japonenses 8 (2): 355-391.
Thomson, G.M., 1898. A revision of the Crustacea Anomura of New Zealand. Transactions and Proceedings of the New Zealand Institute 31: 167197.

Thompson, E.F.. 1930. Contributions for a revision of the New Zealand Crustacca of the family Paguridac. Records of the Canterbury Museum 3 (4): 263-273.
Wenner, A.M., 1972. Scx ratio as a function of size in marinc Crustacea. The American Naturalist 106: 321-350.
White, A., 1847. List of the Specimens of Crustacea in the Collection of the British Museum. pp. vii +143 . British Museum: London.
Whitelegge, T., 1889. List of the marine and freshwater invertebrate fauna of Port Jackson and the neighbourhood. Journal and Procecdings of the

Roval Society of New South Wales 23 (2): 163323.

Whitelegge, \uparrow., 1900. Scientific results of the trawling expedition of HMCS "Thetis" off the coast of New South Wales, in February and March, 1898. Memoirs of the Australian Museum 4: 135-199.
Yaldwyn, J.C., 1975. Checklist of decapod and stomatopod Crustacea from Auckland and Campbell Islands, New Zealand Subantarctic. In: Yaldwyn, J.C. (Ed.) Preliminary Results of the Auckland Islands Expedition 1972-1973. Department of Lands and Survey, Wellington (Reserve Series) 1975/3 (10.8): 360-363.
Yokoya, Y., 1933. On the distribution of decapod Crustacea inhabiting the continental shelf around Japan, chiefly based upon the materials collected by S.S. "Soyo Maru" during the years 1923-1930. Journal of the College of Agriculture, Tokyo Imperial University 12 (1): 1-236.
Zarenkov, N.A., 1967. Crustacean Decapoda collected by the Soviet Antarctic Expeditions in the Antarctic and Antiboreal regions. Biological Reports of the Soviet Antarctic Expedition (1955-1958) 4: 153-201. [Translation by Israel Program for Scientific Translations, 1968].

Plate 1

Australeremus triserratus (Ortmann), lectotype, MZUS. Upper left. Whole specimen, dorsal view, 5.4 times. Lower left. Original label accompanying type lot, original size. Upper right. Enlarged dorsal view of right chela, 6.1 times. Lower right. Enlarged dorsomesial view of left chela, 7.2 times.

[^0]: Figure 7. Lophopagurus nanus (Henderson). male syntype, from off East Moneoeur lsland, Bass Strait, Australia, BMNH 88:33. A. shield and eephalic appendages: B, chela and carpus of right eheliped (dorsal view), C. chela and carpus of left cheliped (dorsal view); 1), right 2nd pereopod (lateral view); E. left 3rd percopod (lateral view): F, anterior lobe of sternite of 3rd pereopods; G, telson. Seale $=1 \mathrm{~mm}(A-E)$ and $0.5 \mathrm{~mm}(F, G)$.

